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Abstract—Computational simulations of wildfire spread typi-
cally employ empirical rate-of-spread calculations under various
conditions (such as terrain, fuel type, weather). Small per-
turbations in conditions can often lead to significant changes
in fire spread (such as speed and direction), necessitating a
computationally expensive large set of simulations to quantify
uncertainty. Model emulation seeks alternative representations
of physical models using machine learning, aiming to provide
more efficient and/or simplified surrogate models. We propose a
dedicated spatio-temporal neural network based framework for
model emulation, able to capture the complex behaviour of fire
spread models. The proposed approach can approximate forecasts
at fine spatial and temporal resolutions that are often challenging
for neural network based approaches. Furthermore, the proposed
approach is robust even with small training sets, due to novel
data augmentation methods. Empirical experiments show good
agreement between simulated and emulated firefronts, with an
average Jaccard score of 0.76.

Index Terms—forecasting, wildfire, emulation, approximation,
surrogate model, spatio-temporal, machine learning.

I. Introduction
Wildfires pose a serious threat to communities as well

as natural flora and fauna in many regions throughout the
world [6], [7], [23]. Forecasting spread of wildfires is critical
in fire management, planning, and response efforts. Simulated
(in silico) fires provide valuable data for operational managers
to assess potential impacts on populated or sensitive areas, in
order to guide active management, mitigation and evacuation
efforts.

Several fire behaviour characteristic models have been de-
veloped [9], [19], [27]. Such models are generally computa-
tionally expensive as they may be based on complex method-
ologies such as the level-set method [19]. This can hinder their
applicability for decision support, especially when large scale
simulations or numerous ensemble predictions are required to
account for uncertainty.

Model emulation (also known as surrogate modelling) em-
ploys a computationally efficient predictive model that approx-
imates a complex physical process model, such as computer
or numerical simulators [3], [22]. Emulation may be able
to overcome some of the limitations of large scale complex
simulations. Early emulation approaches used machine learn-
ing techniques such as Gaussian processes [16], followed by
random forests [10], [18] and deep neural networks [14], [15],
[24]. Neural networks are highly adaptable and have been
successfully implemented in several physical system emulation
problems [15], [24], [26].

Recent reviews on applications of machine learning to wild-
fires cover fire susceptibility prediction, fire spread prediction,
fuel categorisation, fire occurrence detection, and decision
support systems [2], [6], [13]. Deep learning architectures such
as convolutional neural networks (CNNs) [4], [11], [20], and
recurrent neural networks [8] have also been applied.

Within the literature on neural networks related to model
emulation for fire spread and growth prediction, Allaire et
al. [4] present a CNN emulator for hazard assessment in a
contained region of interest. The emulator predicts the amount
of burned land (scalar value). The model does not estimate
fire dynamics. Burge et al. [8] and Hodges et al. [11] propose
CNN emulators for predicting fire dynamics. Both approaches
use a small output array size (< 100 pixels) which limits
the spatial resolution or extent that can be evaluated. Radke
et al. [20] propose a CNN based emulator, which estimates
the likelihood of a pixel outside the firefront burning within
a 24 hour window. Rather than evaluating each pixel, the
likelihoods of a set of sample pixels are generated. The wide
temporal resolution limits the ability of the model to estimate
fine timescale dynamics of the fire. Sung et al. [25] propose a
neural network model incorporating a U-Net structure [21],
trained with a dataset of daily fire perimeters. The model
estimates the likelihood of the fire reaching a given pixel.
Relatively low accuracy is obtained, possibly due to low
temporal resolution.

In this paper we propose a neural network based emulator
for estimating high resolution fire spread over large spatial
and temporal domains. The model is trained with simulated
data produced using empirical rate-of-spread estimates. The
proposed emulator design is able to incorporate data of varying
spatial and temporal resolutions. Furthermore it is capable of
generating estimates over large spatial extents with varying
shapes, which is often challenging for emulation approaches.
Lastly, the model is robust on small training sets due to
employing novel data augmentation methods.

The architecture of the proposed emulator is overviewed in
Section II, and its design features are covered in Section III.
As there are hyper-parameters that can be adjusted, we provide
an empirical evaluation at various configurations in Section IV.
The best performing configuration has an average Jaccard
score of 0.76, indicating good agreement between simulated
and emulated firefronts. The proposed model provides a tem-
plate upon which further developments can be introduced,
especially methods for uncertainty quantification.
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Fig. 1. The proposed emulator architecture, comprising three main components. The autoencoder (blue) encodes and decodes the fire input state. The outer
component (red) incorporates the autoencoder, as well as encoding spatial, forcing, and weather features. The inner component (orange) handles the dynamics
of the emulator. The latent fire state is updated using information from the spatial and forcing layers, as well as weather feature inputs. These layers are
concatenated and passed through a shallow U-Net structure. The sum of the U-Net output and the input latent fire state produce a new latent fire state estimate.

II. Emulator Architecture
Fig. 1 shows a simplified schematic of the proposed emu-

lator architecture. There are three main components: autoen-
coder component, outer component, and inner component.
The autoencoder component is trained separately and its
weights are transferred to parts of the outer component. The
outer component is a feature engineering and downsampling
network which passes inputs to the inner component. The
outer component also upsamples the outputs from the inner
component. Finally, the inner component handles the dynamics
of the system. It forecasts latent fire states based on information
from spatial and temporal features.

There are three types of inputs to the model: fire state
image, spatial data and forcing terms, and finally weather time
series. Each fire state is an image where pixel values represent
when the fire reached a given location. The spatial data are
images representing heightmaps and land classes (eg. forest,
grassland). The forcing terms are curing and drought factors.
The weather time series include temperature, wind speed, and
relative humidity.

A. Outer Network
The outer components of the model are illustrated by the

red shading in Fig. 1. This component incorporates the fire
state autoencoder. Convolutional layers are used on the spatial
data (heightmap and land class map) for feature extraction;
downscaling is performed by strided convolutional layers. This
encodes the information into a smaller latent representation.
Similarly, forcing inputs (drought and curing factors) are
expanded to have the same spatial extent as the latent spatial
features and are concatenated together.

The downsampling and upsampling of the fire state is
performed by the autoencoder. The latent fire state and latent

spatial features form the state component of the inner network.
Weather features are in the form of time-series data. In-

terpolation via upsampling is performed. Each set of weather
values at a given time are passed through two dense layers for
feature extraction before being expanded to the same spatial
extent as the latent spatial features. These are then passed to
the inner network as inputs.

B. Autoencoder
The purpose of the autoencoder is to encode and decode

the fire state to and from a lower latent dimension. The
autoencoder is represented by joining the blue components
in Fig. 1. The encoding component consists of only linear
transformations to preserve the relative temporal relationships
between pixel values. An average pooling layer is used before
a space to depth transformation. The decoding component
consists of a depth to space transformation followed by a
strided convolutional layers. The autoencoder is trained on fire
state data separately from the full emulator.

C. Inner Network
The inner component of the model incorporates the dy-

namics of the system, taking an initial latent fire state and
producing a new updated estimate. The inner component is
illustrated by the orange shading in Fig. 1. This component is
a one-step ahead forecast module.

The state of the module consists of the latent fire arrival
state. This is updated using dynamic inputs from the latent
weather features and static inputs from the latent spatial and
forcing features. Each successive weather input advances the
fire state forward in time.

The inputs and fire state are concatenated and passed into
a shallow U-Net [21], [28]. U-Nets are formed by join-



ing a contracting path with an expanding path, formed by
down/upsampling convolutional layers. This structure is able
to capture dynamics at various spatial resolutions, with deeper
levels capturing broader interactions. We incorporate a skip
connection between the input latent fire state and the output
of the U-Net. In effect the U-Net only needs to learn the change
or residual between successive latent fire states.

III. Design Features

In this section we will briefly discuss some of the unique
challenges that inform our choice of emulator design. Broadly,
we want an emulator that is agnostic to temporal and spatial
resolutions and is able to generate high resolution outputs.

In order to achieve a model that can incorporate various spa-
tial and temporal resolutions we express features like distance,
height, and wind speed in unit-less terms. For example, wind
speed is converted from meters per second into pixel lengths
per interval. In this way a different dataset operating with a
different spatial (or temporal) resolution can be re-sampled to
be compatible with the model inputs.

A further challenge is that the training data often consists of
large sized image arrays (> 1000 px). Furthermore, the image
arrays can have varying sizes. To address this we choose a
fully convolutional network, and encode the spatial data into
a smaller latent representation through strided convolutional
operations. This reduces the complexity of the representation
and allows the model to take arbitrarily sized inputs. This is
performed by the outer component of the model (Section II-A).
In addition, the inner component (Section II-C) employs a shal-
low U-Net structure. This allows for long range interactions
between pixels to be considered by the model using only a
modest overhead of complexity.

The inner component of the emulator deals with the dy-
namic changes to the fire arrival state. To ensure that the
outer model does not produce any dynamic changes, we use
an autoencoder. The autoencoder is trained on the fire arrival
state. Once trained, the autoencoders’ weights are frozen. The
autoencoder is then used by the outer network to encode and
decode the fire arrival state.

Wildfire spread is an inherently stochastic process. In some
cases an estimate may incorrectly place the fire slightly ahead
of an obstacle such as a body of water. If we consider this
as the source of a new firefront propagating through open
terrain, then the burned area by the new front will increase
quadratically in time [29]. By training the model over a single
time interval we limit the training penalty of these mismatches.

As an additional step to the training process, each sample
is cropped around a point on the fire’s perimeter. This reduces
the spatial extent of each sample and generates a uniform size.
This allows for batch processing as well as greatly reducing
the memory requirements for training.

Using cropping and single intervals for model training
represents a novel method of data augmentation. A single fire
can produce numerous semi-independent training samples by
using various cropping locations and time intervals. Further

data augmentation was performed using rotation, reflection and
transposition transformations.

A drawback the cropping approach is that cropping removes
some information about the fire’s position as a whole. The like-
lihood of fire ‘entering’ a cropped region cannot be inferred
during training. To account for this we pad each sample. In this
padded region, each pixel value is assigned to the maximum
of the predicted or target values. This removes the loss penalty
when the presence of fire is not correctly inferred around the
border of a region.

IV. Empirical Evaluation

In this section we first overview the evaluation dataset, and
then present an empirical evaluation using several configura-
tions of hyper-parameters in the proposed emulator.

A. Dataset

We use a dataset of 195 simulated fires generated via the
SPARK fire simulation platform [19]. 155 fires are used as
the training set; 40 fires are reserved for validation. During
training and validation the regions are cropped and only a
single interval is used. Furthermore, we use a prediction
set, composed of the 40 validation fires, but no cropping is
performed and the entire duration of the fire is considered.
This set is not used in training, but is used to evaluate the
performance of the emulator across the full scope of a fire
scenario.

The location of the fires is representative of regional
South Australia. Land classification maps1, topology data2,
and weather conditions3 are sampled to reflect realistic re-
gional conditions. There is a large bias in land classification
towards grassland (78.8%), mallee-heath shrubland (10.5%),
water/unburnable (6.27%). The weather is representative of
high fire risk conditions, often consisting of high temperatures,
low humidity, and moderate to high winds.

Spatial data is converted into the same coordinate reference
system and has a resolution of 30 meters. The height map is
converted into x and y gradient maps. Weather data is polled
from weather stations every 30 minutes (one interval). The
weather values are interpolated (upscaled) into 4 slices for
the majority of our trials. Values are scaled by maximum and
minimum values in the training set. Wind speed and direction
are converted into x and y components. Finally there are two
forcing terms that the model incorporates: drought factor and
curing factor. These terms depend on long term weather trends
that are considered fixed for the duration of the fire.

1Land classification datasets derived from Department of Agriculture and
Water Resources (ABARES) Land Use of Australia 2010-11 dataset. Data is
publicly available under Creative Commons Attribution 3.0 Australia Licence.

2Topography data sets derived from Geoscience Australia SRTM-derived
1 Second Digital Elevation Models Version 1.0. Data is publicly available
under Creative Commons Attribution 4.0 International Licence.

3Meteorological time series data sets derived from Bureau of Meteorology
automated weather station data.



Fig. 2. Evolution of firefront contours for a trial, shown over four panels (left-
to-right, top-to-bottom). Emulator (red), simulation (blue) and ignition point
(green) are overlaid over land classes. Dominant land classes are grassland
(yellow), mallee-heath shrubland (orange), and water (blue). The wind initially
drives the fire south, before turning west. Map size is 46.1 km × 46.1 km,
30 meter resolution.
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Fig. 3. The difference between predicted and target fire arrival times
(measured in 30 minute intervals) for the same test sample as illustrated
in Fig. 2. Positive values (red) indicate false-positives while negative values
(blue) represent false-negatives. The Jaccard score for this trial is 0.81.

Fig. 4. Evolution of firefront contours for a trial, shown over four panels (left-
to-right, top-to-bottom). Emulator (red), simulation (blue) and ignition point
(green) are overlaid over land classes. Dominant land classes are grassland
(yellow), mallee-heath shrubland (orange), and water (blue). The wind initially
drives the fire south-east, before turning north. Map size is 46.1 km × 38.4 km,
30 meter resolution.
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Fig. 5. The difference between predicted and target fire arrival times
(measured in 30 minute intervals) for the same test sample as illustrated
in Fig. 4. Positive values (red) indicate false-positives while negative values
(blue) represent false-negatives. The Jaccard score for this trial is 0.90.



B. Metrics and Loss
For evaluation metrics we choose the Jaccard score, also

known as intersection over union (IOU) score. While this
straightforward metric may not capture the whole ‘goodness
of fit’, it nevertheless provides a basic grounding [12].

The autoencoder component is trained using mean absolute
error (MAE) loss. For training the emulator we introduce a
custom loss function, which evaluates how well the predictions
perform against a benchmark trivial prediction (where the
output is the same as the input). Let yi, yt, and yp be the initial
fire state, target fire state, and predicted fire state respectively.
Furthermore, let MAE(a, b) be the mean absolute error across
corresponding pixels in images a and b. The loss L of fire
state P is defined as:

L(P) = log10

(
MAE(yp, yt) + τ

MAE(yi, yt) + τ

)
. (1)

Small fire growth results in only a small set of pixels indicating
burns, which in turn leads to very small MAE(yp, yt). To
address this, MAE(yi, yt) is used as a normalisation factor.
Furthermore, τ = 10−12 is used to remove singularities that
arise if either MAE values approach zero.

C. Evaluation
We implemented the emulator in TensorFlow [1], using the

Adam optimiser [17] with a batch size of 16. The autoencoder
was trained for 20 epochs and returned an MAE loss of 2.1×
10−3. The emulator was trained for 50 epochs using the loss
function in Eqn. (1).

We train the emulator under several configurations of hyper-
parameters. Specifically, we test variously sized cropping
windows (c), U-Net depths (d), and padding values (p). The
number of interpolation slices per interval is 4.

Table I shows the average loss and Jaccard (IOU) scores for
the training and validation sets, as well as for the prediction
set. The prediction results are split into two parts. The first
part is when the emulator is run over the entire duration of
the prediction set (intervals 0-22). The second part is when
the emulator begins with the fire in progress (intervals 5-22).
Furthermore, two Jaccard scores are shown: the top value
represents an unweighted score averaged over all samples,
while the lower bracketed value shows the score weighted by
burned area over all samples.

Direct comparison between configurations of loss values is
not possible due to differences in how padding and cropping
sizes affect the loss function defined in Eqn. (1). We note that
the differences in loss and Jaccard scores between training
and evaluation sets are small. This indicates that the model is
generalising well to the entire dataset.

The prediction set shows how well the model performs
across the full spatial and temporal extents of each sample.
The best performance is found for larger cropping sizes (512
pixels). The prediction Jaccard scores of the smaller cropped
samples are significantly lower than that found during training
and evaluation. There does not appear to be a significant dif-
ference between depth 1 and 2 U-Net configurations. Finally,

TABLE I
Model loss and evaluation metrics. Each configuration comprises c, d,
p components, where c is size of the cropping window, d is the depth of

the U-Net component, and p is the amount of padded pixels.

Configuration Train.
loss

Val.
loss

Train.
Jacc.

Val.
Jacc.

Pred. Jacc.
(0-22)

Pred. Jacc.
(5-22)

512c, 1d, 32p -1.43 -1.43 0.78 0.79 0.76
(0.80)

0.79
(0.83)

512c, 1d, 64p -1.47 -1.48 0.79 0.79 0.71
(0.74)

0.77
(0.74)

512c, 2d, 32p -1.43 -1.45 0.78 0.79 0.71
(0.74)

0.77
(0.81)

512c, 2d, 64p -1.55 -1.51 0.81 0.80 0.69
(0.70)

0.71
(0.76)

256c, 1d, 32p -1.61 -1.73 0.81 0.83 0.64
(0.67)

0.69
(0.72)

256c, 1d, 64p -1.88 -1.92 0.86 0.86 0.71
(0.72)

0.72
(0.77)

256c, 2d, 32p -1.64 -1.67 0.82 0.82 0.67
(0.74)

0.71
(0.77)

256c, 2d, 64p -1.98 -1.93 0.87 0.86 0.65
(0.68)

0.68
(0.74)

128c, 1d, 32p -1.91 -1.92 0.86 0.86 0.42
(0.43)

0.45
(0.45)

128c, 2d, 32p -1.77 -1.82 0.84 0.85 0.52
(0.52)

0.53
(0.55)

the model performs better when using a 32 pixel padding
distance. A number of trials were also performed using 6
interpolation slices per interval rather than 4; only a very
marginal improvement in Jaccard scores was observed.

Figs. 2 and 3 illustrate the emulator performance on a
sample fire. There is close agreement between simulated and
emulated fires for much of the duration. The largest disagree-
ment occurs as the fire passes through a region containing
small bodies of water. The emulator fails to find a similar
pathway to the original Spark simulation.

Figs. 4 and 5 show the emulator performance on another
sample fire. In this example there is also good agreement
between simulated and emulated fires. To the west an early
under-estimation by the emulator leads to a large under-
estimation as the wind changes and pushes the fire north.

These types of behaviour are typical of many samples
that have been manually inspected. Small differences between
emulator and simulation are often exaggerated over time.
Nonetheless, the overall dynamics of the emulator appear to
be in line with expected fire behaviour.

V. Conclusion
In this paper we have shown how convolutional networks

can be constructed in order to closely emulate wildfire spread
from the Spark simulator, resulting in an average Jaccard
(IOU) score of 0.76 for up to 11.5 hour fire duration. Qualita-
tively, the emulator makes predictions that exhibit very similar
behaviour to that of the targeted simulations. The stochastic
nature of wildfires means that large discrepancies are often
the result of small differences being exaggerated, rather than
a fundamental problem in the emulation estimate.

The proposed approach has several features that make it
versatile. It is able to work using variable spatial extents and



resolutions, variable temporal extents and resolutions, as well
as being able to incorporate various types of spatial, temporal
and scalar features.

We use a novel approach to model training. This approach
incorporates transfer learning as well as data augmentation in
the form of targeted cropping and the use of single intervals
for training (rather than full duration trials). Additionally, we
use a custom loss function that is designed to operate well for
this specific class of problem.

The flexibility of the modelling approach means that it
should be possible to incorporate new features into the model
without needing to fully retrain the model. For example, if
a new land class is added, then it is possible that only the
first few downsampling convolutional layers would need to be
retrained.

A further area of interest is to take data from real world
samples and use these to ‘fine tune’ the model parameters. In
this way it may be possible to use relatively sparse real world
data to improve model performance, and potentially infer fire
dynamics directly.

The proposed approach is not inherently specific to wildfire
prediction. Similar geo-spatial modelling problems such as
pollutant spread, pest spread, or disease spread may also be
well represented by a similar emulation approach.

In followup work we have explored using ensemble sim-
ulations as training data for emulators, in order to directly
generate likelihood estimates of fire locations [5].
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