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ABSTRACT

Cloud operators utilize collective communication optimizers to en-
hance the efficiency of the single-tenant, centrally managed training
clusters they manage. However, current optimizers struggle to scale
for such use cases and often compromise solution quality for scal-
ability. Our solution, TE-CCL, adopts a traffic-engineering-based
approach to collective communication. Compared to a state-of-the-
art optimizer, TACCL, TE-CCL produced schedules with 2x better
performance on topologies TACCL supports (and its solver took a
similar amount of time as TACCL’s heuristic-based approach). TE-
CCL additionally scales to larger topologies than TACCL. On our
GPU testbed, TE-CCL outperformed TACCL by 2.14x and RCCL
by 3.18x in terms of algorithm bandwidth.
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1 INTRODUCTION

Collective communication libraries (CCLs) like MSCCL [23], TA-
CCL [33], and Blink [35] optimize data transfers in distributed ML
training. They take a topology and a demand as input and output
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a set of routes and a schedule that either maximizes bandwidth
utilization, minimizes job completion time, or both, as illustrated
in Figure 1. Here, demand is the amount of data each GPU wants
to send to other GPUs in the topology, common examples of which
include ALLToALL, ALLGATHER, and ALLREDUCE.

Operators want these CCLs to produce near-optimal schedules
for the collective communication problem to maximize the effi-
ciency of their single-tenant training clusters, as GPUs are expen-
sive and scarce. They use CCLs to support parallelized training
jobs (model or data) in data centers with heterogeneous server
configurations. They also use CCLs to search for well-provisioned
topologies, evaluate hardware architectures, or co-optimize various
aspects of distributed training [22, 36, 37] — optimizers guide these
explorations.

Traditional, manual collective communication strategies are of-
ten wasteful and inefficient. For example, prior work reports the
GPUs in BERT [9] and DeepLight [8] spent 11% and 63% of the
time idle respectively [33]. Faster GPUs and larger models will only
emphasize inefficiencies in these communication schedules.

Recent CCLs attempt to automatically schedule communication
to improve performance and utilization. While successful in many
cases, they struggle to support the largest of today’s training tasks
in large cloud providers like Microsoft. These recent CCL solutions,
in broad terms, take one of two approaches: precise modeling and
heuristic-based modeling.

Optimizers like MSCCL [5] precisely model all aspects of the
system and its compute, and they attempt to achieve a near-optimal
solution through techniques like SAT solvers. These approaches
do not scale beyond one or two chassis and become intractable
for typical large distributed training tasks (often at least 30-60
chassis [6]).

In reaction to these scalability concerns, a second class of ap-
proaches falls back on increasingly rough heuristics to find the
solution more quickly [33, 37]. Unfortunately, these heuristics sacri-
fice considerable performance to simplify the problem. For example,
TACCL [33]’s heuristics separate routing (the path packets take)
from scheduling (when each chunk is sent on each link) and under-
perform hand-crafted solutions by a factor of 2 or more. Similarly,
the SPFF schedule in [37] explores only a small subset of the feasi-
bility space, which causes performance gains to fall apart outside
of a small set of well-defined topologies.
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Figure 1: An illustration of the collective communication
problem. The input is a demand matrix and capacitated net-
work topology. Links are bi-directional with capacity C bits/s,
and, for simplicity, chunks are C bits. We show the allocation
on link n1 - njy.

We argue that it was too early to give up on near-optimal solu-
tions for CCLs. We observe that the adjacent field of Traffic Engi-
neering shares striking similarities with the collective communica-
tion optimization problem in its inputs, constraints, and objective
functions, all while producing near-optimal solutions. Crucially,
TE algorithms avoid any sizable performance sacrifices to (already)
scale beyond the sizes we require for current training tasks — most
recent production WAN TE deployments [20] are approximately the
same size as the topologies considered in recent work in collective
communication [33]. Other production TE solutions demonstrate
utility on networks of thousands of nodes [17, 19].

We acknowledge that there are concrete differences between
the two problems, and we do not know which will scale faster in
the future; however, our community has successfully deployed TE
algorithms at massive production scales [20], which suggests, at a
minimum, that today’s distributed ML training jobs may benefit
from similar lessons. Our system, TE-CCL, proves this is feasible.
We show TE-CCL can improve upon state-of-the-art solutions by
over 2X on a two-chassis NDv2 topology [3] (Figure 14) and can
scale significantly further.

We credit TE-CCL’s formulation, scalability, and performance to
our ability to borrow ideas from scalable production TE systems.
TE solutions give us a model of the physical problem (i.e., the flow-
conservation constraints and the capacity constraints) and make it
easier to reason about a formulation that is otherwise difficult [23,
33]. But the analogy is not exact:

o Discretized sends: TE problems mostly focus on traffic bundles
with high rates and the problem of allocating a fixed fraction of
link capacity to each demand. Instead, CCLs have to schedule
small- to medium-sized demands, which introduces more struc-
ture and adds new and, in some cases, hard-to-model constraints
and dependencies.

o In-network copies: TE problems often assume flow conservation
as a fundamental constraint; in contrast, collectives benefit sig-
nificantly from copying data at intermediate GPUs, e.g., for tree
broadcast/reduce patterns.

Latency and queuing: TE problems get away with focusing on
steady-state effects and are able to make fluid-flow assumptions
about data delivery because they assume large traffic bundles.
In contrast, we cannot ignore the effects of propagation and
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queuing delay for small transfers; modeling them is essential to
CCL scheduling.

o Support for storage and caching: TE problems generally assume
that data is received and sent as soon as possible [4]; in contrast,
as we show in §6, we can speed up solvers substantially if we
use the available GPU memory.

Others have explored a subset of these features in isolation in the
TE domain (e.g., [17] supports deadlines on fixed-size transfers,
[21] allows for store-and-forward, and [11, 27] consider multicast),
but we need to reconsider the problem formulation significantly to
model the combination.

Our solution, TE-CCL, is a scalable mixed-integer linear program
(MILP) with optimality gap guarantees [4]. Similar to other CCLs
like TACCL [33] and MSCCL [5], we designed TE-CCL for the
scenario where the operator has full control of the infrastructure.
The scheduler only needs to run infrequently each time the operator
provisions a new workload. However, unlike prior work, TE-CCL
scales to much larger collectives than TACCL and MSCCL, and
it substantially improves solution quality compared to this prior
work. For certain collectives, we can further scale our solution by
converting the MILP into an LP by removing all integer variables. In
the general case, we improve scalability by partitioning the problem
in time, using a technique inspired by the A* [12] algorithm from
robotics.

TE-CCL’s solutions outperform the state-of-the-art scalable so-
lution, TACCL [33]. We show a minimum of 2X performance im-
provement on the same 2-chassis NDv2 topology used by TACCL.
As part of TE-CCL, we are also able to algorithmically account for
multi-tenant and heterogeneous topologies, which are critical for
cloud-scale GPU clusters!.

e We re-examine recent claims that significant approximation is
needed to scale CCLs to large distributed ML training tasks and
construct TE-CCL to disprove those claims.

e We develop a novel formulation of the CCL problem that sup-
ports the full set of features supported by prior CCLs and also
model network effects more completely.

e We evaluate TE-CCL on topologies from prior work and a large
public cloud. We show it scales and improves solution quality
by more than 2X in terms of algorithm bandwidth. On our AMD
GPU testbed (Figure 15), TE-CCL outperformed TACCL by 2.14x
and RCCL by 3.18x.

This work does not raise any ethical issues.

2 BACKGROUND AND MOTIVATION

We present background on collective communication and motivate
the need for scalable communication schedules for ML collectives.
We then describe TE formulations and how they relate to collective
communication optimization.

2.1 The Need for Fast Collective Scheduling

Distributed training jobs that run on multiple GPUs use data paral-
lelism (which aggregates gradients across GPUs) or model paral-
lelism (which aggregates intermediate data across GPUs) to speed

! This work does not investigate how to implement the multi-tenant schedule in practice
but only provides a formulation that can solve for a multi-tenant demand matrix.
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w/o copy: 4 sec
w/ copy: 2 sec

(a) Modeling copies

a2 =3a1 +2
Total time w/o modeling queuing: 3a; + 4
Correct estimate: 3a1 + 5

(b) Proper modeling of delay
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w/o store and forward: 3 solutions
w/ store and forward: 3 + 3 solutions

(c) Modeling store and forward

Figure 2: Examples of three aspects of the CCL problem that are essential for accurate modeling but whose combination is
not well-handled by similar formulations. These types of inaccuracies lead solvers to make poor decisions. s; are the starting
location of chunks (shaded boxes), and each chunk is of size 1 MB. d; are the destinations. Link labels show <latency> (in ps) /

<bandwidth> (in MB/s).

up training. In these settings, Collective Communication Libraries
(CCLs) optimize this cross-GPU communication by optimizing
routes and schedules for the particular hardware configuration [23,
33].

Collective schedules were traditionally hand-optimized for each
new collective and class of topologies, e.g., in or using NCCL [16] —
a process that was inaccurate, time—consuming, and error-prone,
particularly for large and/or heterogenous deployments.

Recent collective communication optimizers seek automation.
To use these libraries, applications specify (1) the “collective,” ie., a
relationship between a set of GPU’s input and output buffers; (2) the
“demand matrix,” i.e., the amount of data to be sent between each
input buffer and output buffer; (3) the topology, i.e., the connectivity,
latency, and capacity of each link; and (4) an objective.

Collective optimizers typically represent their objectives in terms
of the “a— f” cost model where « is the fixed delay data experiences
when it goes over a link (which includes propagation and processing
delay), and f represents the transmission delay associated with
sending 1 bit of data over a link (the inverse of the link capacity). A
data chunk of size L thus incurs a cost of @ + L when sent over a
link. Collectives implicitly model each link’s capacity constraints
through this notation — when a link has less capacity available, the
data takes longer to traverse it.

The output of these optimizers specifies which and how much of
the data each GPU should send on each link at each point in time
in a way that optimizes the user’s objective, respects the network
capacity constraints, and results in the correct data in the output
buffer at each GPU.

2.2 Relationship with TE Solutions

Traffic Engineering (TE) is a problem in computer networks that
arises most frequently in the context of managed Wide Area Net-
works (WANs), and most recently, those of cloud networks [1, 13,
15, 20, 25].

A primer on TE formulations. Multi-commodity flow problems
in TE route specific demands (with a given source and destination)
in a way that meets the capacity constraints of the network. Experts
usually model TE in one of two forms: a path [13, 15] or edge
formulation [4]. We focus on the edge formulation here, but our
discussion also applies to the path form. In its most basic format, the
edge formulation takes a set of demands D (represented as a matrix
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matching source and destination nodes (s, d)) and the topology
where each link (i, j) has capacity T;; as input, and it outputs how
much of each demand should go over each link F, 4; ;. It solves:

OptMaxFlow(N, E, D) £ arg mlf}x Objective(F)

s.t. F € FeasibleFlow(N, E, D)

where N and E denote the nodes and the edges in the topology
respectively. It adds feasibility constraints (FeasibleFlow) to ensure
the network can physically route the traffic and not experience
congestion, these are:

(1) Capacity constraints: TE formulations model capacity con-
straints explicitly. The TE capacity constraints ensure the flow
the TE optimizer allocates to each link does not exceed the

available capacity:
Z Fsaij < Tij
(s.d)eD

(2) Flow conservation constraints: These constraints appear in the
edge form of TE and ensure the network does not create traffic
“out of thin air” but only routes traffic:

Z FS,d,j,i = Z Fs,d,i,j Vl | i+ dest(s)

JIGDeE JIG)€E
D Feaji= ). Fedij+DsiVili=dest(s)
JIGDeE JIG)EE

where Dg ; is the data node i demands from source s.

It may appear that elements of this formulation match the model
we laid out in Figure 1, but there are fundamental differences that
make this difficult to apply directly.

Discretized sends. Demands in TE request a fixed bandwidth
(where the units are in bits per second), which the TE solution
assumes is sustained for the entire duration the operator uses the
solution. This is true because TE solutions bundle multiple flows
between the same nodes into a single demand — statistical averaging
then ensures the demand is sustained for longer. Production systems
periodically recompute the solution with an updated demand matrix
to support shifts in the demand over longer time scales but only at
course-grained regular intervals (minutes).

In collectives, on the other hand, demands ask the network to
transfer a fixed amount of data (where the units are in bits): once
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Figure 3: Relative error in the average throughput (output
buffer size / total transmission time) of solutions that model
latency and queuing compared to solutions that do not. Re-
sults are for a proprietary topology from a public cloud with
2 chassis, 8 GPUs, and 40 edges, where the o of intra-chassis
and GPU-switch links are 0.6 and 0.75 ps, respectively.

the node sends a chunk of data, it moves on to a different chunk
of data if available — capacity frees up over time. In the case of a
sender, sender nodes will eventually act as relays and no longer
send data of their own for the current instance of the collective.

In-network copies. In TE, the flow conservation constraints en-
sure the incoming rate to a node is the same as the outgoing rate.
These constraints enable traditional TE to avoid the scenario where
more traffic comes into a node than what goes out — otherwise, the
network will either have large buffers or buffer overflows. It also
helps to avoid wasteful solutions, where traffic arrives at a node
but is never used.

Many collective demands (e.g., ALLGATHER) consist of sources
that send the same data to multiple destinations (multi-cast traffic)
and benefit substantially from the ability to copy and send data
at intermediate nodes. Figure 2a shows a simple example of the
impact of not considering in-network copies, comparing the optimal
schedule with and without the capability.

Latency and queuing. TE problems allocate flows to paths?®. Tra-
ditional TE models can make this fluid-flow approximation because
they model fixed (and sustained) demands and compute steady-
state performance — they do not rely on queuing and do not have
to reason about propagation delay.

But we have to model o and the role of interconnect timing in the
CCL problem because of the small transfer sizes that are common
in collectives [5, 33] (Figure 3 shows how « plays a bigger role in
such transfers). If we model delay as the end-to-end transfer time,
we introduce significant errors compared to when we model the
interconnect behavior. For example, in Figure 2b, the error between
these two models is introduced because the chunks from S; and
Sy arrive at hs at the same time, and, thus, one chunk needs to be
queued.

Support for storage and caching. Most TE models do not leverage
intermediate nodes’ ability to buffer data and, in fact, usually avoid
it. This makes sense in TE; switches and routers have shallow

This is also true of the edge-form of the problem.
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Variable Description

N Set of nodes in the graph.

S Set of nodes in the graph that are switches (S C N).

E Set of edges in the graph (E C 2V*N). Edges are unidirec-
tional.

C Chunk IDs (C = {0,1,2,...,C}). Each node has < C+1
number of chunks.

D Demand function (N X C x N — {0,1}) where Dg 4 is

whether destination d wants chunk with id ¢ from node s.
Epoch duration.
K The set of epochs (K = {0,1,2,...,K}).

N

Fsijk(c)y Amountofsources chunks that are going over link (i, j) €
E atepoch k € K.

Bs ik, (c) Amount of source s chunks that are in node i’s buffer at
the start of epoch k.

T;j Capacity of link (i, j) € E.

aij Fixed latency associated with link (i, j) € E.

bij Number of epochs contained within an «;; for each link
(i,j) € E.

Rs.d k Source s chunks that node d read off of the network in
epoch k.

Rsdk(c) Sources chunks read off the network by d up to epoch k.

Table 1: Our notation. We put in parentheses the index (c)
because we only use it when demands benefit from copy.
When we model copy, F and B are integers. We show for
some demands, we can use real variables instead in §4.1.

buffers compared to transfer sizes, and for stable demand, there is
little reason to delay sends.

However, most nodes in a collective topology can buffer sizable
amounts of data before sending it out. We show that we can use
this to improve solver time as it increases the number (space) of
(equivalent) optimal solutions. For example, in Figure 2c, any of
the two nodes can begin the schedule and send their chunks to A,
which creates 3 possible schedules for the first 1s. With store and
forward, we can have three additional schedules where all three
sources send to A in the first second, and we then choose in which
order to send them to the destination in the next. The solution
quality is the same in both cases (we satisfy the demand in 3 s). For
some collective demands and topologies, store-and-forward may
also improve the transfer time.

3 THE TE-CCL MODEL

Prior work assumed TE is incompatible with collective communica-
tion [33] in part because of the above differences. Our main insight
is that the principles TE uses to model communication continue
to be valid in CCLs, modulo a few crucial modifications. Drawing
an analogy to TE provides a framework for us to retain a direct
mapping of constraints between the two problems that (a) supports
a principled construction of a solution to the CCL problem and (b)
enables operators to later leverage the vast body of research on TE
and methods to scale it, e.g., PoP [25] and NCFlow [1].

To that end, in this section we show how we can model the
collective communication problem based on ideas that have their
roots in how operators solve TE problems [17, 21].
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3.1 The General Model

Our notation is in Table 1. Like TE, we need to account for capacity
and flow conservation constraints. But before we show how we
model these behaviors, we need to introduce a few new concepts
that allow us to address the differences we described in §2: chunks,
epochs, and buffers.

Unlike TE, collective demands are finite — we need to keep track
of where data is at each point in time. We divide the demand into
chunks to facilitate this. Chunks are contiguous blocks of bytes?.
We model time through discrete epochs and produce a schedule
that tells the user, for each epoch, which chunk to send and where
to send it. We assume that each source node has a maximum of
C + 1 chunks, where we identify each chunk globally through a
unique id (s, c), where s is a source node and c is the local id of
the chunk at the node. The demand is represented by the function
D, where D . 4 indicates whether destination d wants the chunk
with id ¢ from node s. This notation is akin to the multi-commodity
flow problem, where each commodity is tracked from its source
to its destination to ensure all commodities reach their intended
destinations.

We discuss chunk sizes and epoch duration in §5. For now, we
assume 7 is the epoch duration and Tj; is the capacity of a link (the
units are chunks per second), and an epoch is sufficient for at least
one chunk to traverse the fastest link.

We use buffers to model store-and-forward. To simplify the ex-
planation, we assume each node has enough buffer to store the
entire network demand if it needs to (we show how to remove this
assumption in Appendix B).

We need to track each chunk to model copy: we use Fg; j i . and
By i k¢ to track whether chunk ¢ from source s is going over link
(i, j) in epoch k or is in node i’s buffer at the beginning of epoch k
respectively.

We also need to use integer variables — we cannot allow chunks
to be split into smaller pieces. We use the example in Figure 4 to
explain why. Source s sends the first half of a chunk () to both
destinations dq and dy. These nodes then both forward it to ds: they
have no way of knowing this is the same half. The optimization now
thinks it has delivered the full chunk to d3 while it has only delivered
one half of it twice: it sends the second half of the chunk to both d;
and dp but not to ds. If we use integers for F; ; . . and Bg ;. we
can avoid this problem (we do not need this for demands that do
not benefit from copy §4.1). We can increase the number of chunks
to decrease the size of each individual chunk and support smaller
transmission blocks (the optimization automatically consolidates
them to bigger units if needed) — but increasing the number of
chunks introduces a trade-off because it increases the number of
variables and slows down the optimization.

We now have everything we need:

Capacity constraints. Capacity constraints ensure we do not send
more data than the link can carry in an epoch.

Capacity Constraint(i, j, k) £

D D Frijke < Tyt

seN ceC

3We allow our solution to split chunks into smaller blocks when we move to the linear
program form.
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Epoch1 [J

Epoch 0 one chunk ° Epoch 2

(as two halves)

Epoch1

Figure 4: We need integer variables to track each chunk. If
we allow partial chunks (17 and [J) and copy at the same time,
we run into a situation where the optimization can send
the same copy of part of a chunk () to two neighboring
nodes (in this case di and d2) and they can forward it along
to the destination (ds). Since the formulation has no way
of knowing these two halves are the same, it thinks ds; has
received the full chunk.

Flow conservation constraints. TE uses flow conservation con-
straints to ensure the network does not create traffic out of thin
air: the sole purpose of these constraints is to ensure a non-source
node only consumes or forwards all of the traffic it receives. But
these nodes can create traffic in the collective case (they copy data
and forward it along multiple outgoing links) and we also have to
account for queueing and propagation delay.

To model delay, we need to ensure a node does not forward
a chunk if it has not received it. We first compute §;; = a_;, the
number of epochs a chunk needs to traverse a link. Traffic that node
i sends to node j at the beginning of epoch k arrives at node j by
the end of epoch k + [6;;]. Node j can forward a chunk it receives
from node i if node i sent it [;;] epochs ago.

In-network copies, by definition, violate traditional flow conser-
vation constraints. At the same time, the node does not need to
copy the chunk on the same link in the same epoch. We use this,
along with §;;, to rewrite the flow conservation constraints as:

Flow conservation constraints(s, n, k, c) £

2

Yjl(jn)€E

Bsn e+ Fs jn - [8inlc 2 Fonjhete

max
Vjl(nj)€eE
This constraint encodes that what the node n has in its buffer along
with what it receives in epoch k has to be larger than what it sends

out in the next epoch on each of its outgoing links. We track the
buffer contents as follows:

Buffer constraints(s, nk,c) =

2

Yjl(j:n)€E

Bs,n,k,c = Bs,n,k—l,c + FS,j,fl,k— [djnl-1c

The buffers accumulate all traffic the GPU has received up to
that point. Nodes have enough memory for this — for collective
demands such as ALLGATHER, each GPU needs all the chunks that
are sent over the network and stores them anyway. Moreover, it
is straightforward to model limited buffers if we track what we
should remove from the buffer in each epoch (see Appendix B). We
evaluate the benefit of buffers using an ALLGATHER demand in §6.
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The first and last epoch’s flow conservation constraints are
slightly different from the above as a node does not receive any-
thing in the first epoch and does not send anything in the last. We
refer the reader to the Appendix A for details.

Destination constraints. We next need to account for demands
to make sure that all demands are met at the end of execution. The
constraints are as follows:

Destination constraints (s, d, k, c) =
Rs,d,k,c = min(Ds,d,wBs,d,kH,c) &
Rs,d,K,c = Ds,d,c

where R; ;i . is whether d has received chunk c of source s by
epoch k. These destination constraints are different from their
counterparts in traditional TE models. This is because of copy:
d may want a chunk and also relay the chunk to others. Hence, we
cannot assume d wants to consume everything in its buffers. This
is why we take the minimum of D 4 . and B; g j41 .- We ensure d
eventually receives its full demand by the last epoch K by setting
Rs.dk.c t0 D g c.

Modeling switches. So far, we have only modeled the behav-
ior of GPU nodes. While some topologies (e.g., within a single
DGX1 node [5]) only consist of GPUs, almost all larger topologies
use switches to connect GPU blocks. We have to model network
switches differently because they have limited memory and cannot
buffer chunks for appreciable durations. Hence, we set the buffer
at each switch to zero.

Traffic pays the a delay cost of two links to cross a switch: one
from the node to the switch and one from the switch to the node®.

Most of today’s switches support copy through SHARP [10], and
so we model switches with this assumption (switches have the same
flow conservation constraint as other nodes). Note that we can also
model switches without this capability to support legacy hardware.
One way is to use traditional TE flow conservation constraints
for the switch (what comes into the switch must go out). Another
option is to use the approach from TACCL [33]: replace switches
with hyper-edges and allow the user to choose which hyper-edges to
allow. For this second model, we need to add additional constraints.
Due to limited space, we refer the reader to Appendix C for details.

The former two approaches are easier to use in practice: the user
does not need to specify a sketch (which is crucial to TACCL) or
pick which GPU communicates with which other GPU — when
we looked at the TACCL code we found the authors used their
uc-min and uc-max strategy along with the user-specified sketch
to automatically find which links to enable for switches within
the node, but for cross-node links they pre-identified which links
perform best manually. We need to understand the topologies well
to write such sketches and we found it difficult when we evaluated
new topologies with TACCL. Our solution requires no human in
the loop — the user only needs to specify the topology and the
demand matrix — but the solver is slightly slower.

4Prior work models this behavior incorrectly — they remove the switch and replace it
with a direct link but set the & and f§ based on the uplink only [33].
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The objective. Our optimization objective is to finish the transfer
as quickly as possible. We can encode this as follows:

1
Objective function = -
+1

VkeK,Vs,deN:s#d

Rs.dk

The objective gives fewer rewards as k increases: the objective
improves if the schedule satisfies the demand as soon as possible.
We now have a complete optimization model.

One nuance here is that the optimization has multiple optima:
the objective does not discourage solutions where we send flows
that do not satisfy any demand (as long as the schedule satisfies
all demands as quickly as possible, the solution is optimal). Such
solutions are clearly wasteful.

To avoid such silly cases, we can do one of two things: (a) we can
either add a term to the objective to discourage unnecessary flows,
or (b) we can zero out those flows in post-processing the solutions.
The first results in higher solver run times as it becomes harder for
the solver to prove optimality.

We use the latter approach, where we run an algorithm similar
to a reverse DFS. We start from each destination and track the flows
from that destination to the source until we account for its entire
demand. We then remove (zero-out) all remaining flows as there
is no demand corresponding to them. This takes O(|V| + |E|) time,
where V are the vertices and E are the edges of the graph.

4 SCALING

Our model is general and pushes beyond the scale where operators
use CCLs today [5, 33]. Extrapolating further, we acknowledge
that quickly expanding training cluster topologies may render even
the above solutions impractical in the future. We next show two
methods to scale TE-CCL.

The first works in situations where in-network copies are not
needed (e.g., ALLTOALL) and preserves optimality. Such collectives
only require us to account for the & delay cost but otherwise match
the traditional TE formulation. The second is general (i.e., supports
copy): it solves the problem by partitioning it in time (its goal, in
each time partition, is to make as much progress as it can towards
finishing the transfer). This later model is sub-optimal, but we
empirically show it performs well (see §6) as it more accurately
captures the optimization incentives and constraints. Its formula-
tion allows users to trade off optimality and speed by changing the
number of partitions (smaller partitions increase sub-optimality
but improve scalability).

4.1 Scaling by Converting to an LP

MILPs are time-consuming, non-convex problems, but there is only
one reason we needed integer variables for our model: support for
in-network copies. In cases where demands do not benefit from copy
(i.e., when each destination wants a unique segment of information
from each source), we can change our formulation into a linear
program (LP). LPs are convex optimization programs that we can
solve in polynomial time and scale better than MILPs.

We remove support for copy and modify the flow conservation
constraints back to their traditional form. The following constraint
dictates that a node either buffers a chunk it received, forwards it
in the next epoch, or consumes it. Notice a node can consume a
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chunk it received at the end of an epoch. We do not track individual
chunks since we no longer need to track duplicates. This reduces
the number of variables.

A

Flow conservation constraints (s, n, k)

Fs jink—8;a1 + Bk =

{il(.n)€E}

Bs,n,k+1 + Rs,n,k +
{jl(nj)eE}

The constraints for switches are different: a switch does not con-
sume chunks or buffer them, so we remove those terms.

Since destinations no longer need to both consume and forward
chunks, we can modify the destination constraints:

Fs,n,j,k+1

Destination constraint(s, d, k) £
k
Rs,d,k = Z Rs,d,r &
r=0

Rs,d,K = ZDs,d,c
Ve

Our LP produces a rate allocation to demands that originate from
each source on each link. From this, we generate a schedule (we
translate these rates to paths for each chunk through the same
DFS-like solution in §3). This is a straightforward algorithm, and
we omit it due to space constraints.

4.2 Scaling Using the A* Technique

The LP form allows us to scale the solution to large topologies,
but it does not permit copy. Copy is important for demands such
as ALLGATHER (see §2). We also provide a second scaling method
inspired by A* [12].

We partition the problem into multiple rounds. In each round,
we no longer find a solution that satisfies all demands but instead
motivate the solver to make as much progress towards this goal as
it can. These optimizations have fewer variables and are faster. We
sequentially solve them one after the other until we reach a round
where we meet all demands. This solution is similar to the SPFF
schedule in [37] but results in better performance because each
optimization covers (“sees”) more of the problem and can use more
paths. Here, we need to address two new modeling challenges:

Encoding the right incentives. We need to remove the constraint
that required the optimization to meet all demands by the last
epoch. Otherwise, the optimization in each round may become
infeasible. This means our objective function is no longer sufficient:
it only says if it is feasible to satisfy a demand, then do so as fast
as possible.

We augment our topology with logical links that allow us to
compute this reward function. More specifically, we add logical
edges to the graph that connect each node to all the destinations
and add weights to each of these logical edges that correspond
to the minimum distance — we compute these weights using the
Floyd-Warshall algorithm [14] and the a-delay cost of each edge —
from the node to each destination. We can now use these edges to
encode a viable cost function, which we can add to our original
objective. We refer the reader to the Appendix D for the details.

22

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

Modeling delay. Chunks that we send on any link (i, j) may not
reach j by the end of the round (because of the «;;-delay on that
link) but instead arrive in a future round. We, therefore, need to
maintain state from one round to the next and incorporate these late
arrivals in our formulation. The full formulation is in Appendix D.

5 IMPORTANT CONSIDERATIONS

We described how we formulate the CCL problem in TE-CCL. All
three formulations (the general MILP form, the LP form, and A*
model) find solutions for any input demand, but only the general
MILP form and the A* model support copy. There are a number of
parameters in these formulations we need to choose carefully.

Epoch durations and chunk sizes. A side-effect of using integer
variables in the MILP formulation and the A*-based technique is
that the choice of chunk size and epoch duration is important (the
LP is not sensitive to these settings) — smaller epochs allow for
finer-grained schedules that better leverage the network capacity.
To find the best chunk size, we can sweep a range of values to find
the best one quickly, take it as an input, or users can also utilize
solutions like [22] to pick the optimum for their workflow.

To set the epoch duration, we can do one of two things: (a) to
get the best schedule from the vanilla MILP formulation, we can set
the epoch duration to the time it takes the slowest link to transmit
a chunk (the MILP cannot send anything if we use smaller epochs
because of the capacity constraints); or (b) we can set the epoch
duration based on the time it takes the fastest link to transmit
a chunk. Option (b) enables the MILP to produce finer-grained
schedules but to use it, we have to modify the capacity constraints
and the flow conservation constraints. Due to space constraints, we
refer the reader to Appendix F for the details. We compare the two
approaches in §6. Option (b) produces better schedules, which is
why we use it for most of our evaluations.

Number of epochs. We need to input an upper bound on the
number of epochs, which estimates how many epochs it may take
to fully satisfy the demand: pick too small a number, and the op-
timization will be infeasible; pick too large of a number, and the
MILP will be too large and too slow. To streamline finding the right
number of epochs — and to not burden the user with having to
identify what numbers to use — we develop a simple algorithm that
finds a loose upper bound on how long we need to satisfy all the
demands.

We use a feature in optimization solvers (e.g., Gurobi [30]) where
they can quickly return some feasible solution. Most solvers quickly
find a feasible solution that is also optimal and spend the majority
of their time proving optimality [24] (in our experiments, the solver
usually found a good solution in the first hour and did not improve
it even when we ran for 10 hours). We use binary search with this
feature to find the minimum number of epochs we need. We can
also use this method to scale TE-CCL further if needed.

Number of epochs in a round in A*. We solve round after round
of A* until we deliver all the demands. Users can choose how many
epochs to use in each round. The smaller the number of epochs in
a round, the faster the optimization and the higher the optimality
gap. Picking a small number of epochs per round also impacts the
state we need to maintain. In our experiments, we set the number
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of epochs such that chunks do not arrive later than one round in
the future.

The topology, «, and g inputs. TE-CCL takes the topology and
the values for a and f§ as input. We do not provide an independent
method for computing these values.

Which switch model to use. We provide two switch models: one
that allows the switch to copy chunks (to model networks with the
SHARP protocol [10] enabled) and one that does not (the latter is
similar to TACCL’s hyper-edge model). It is up to the user to decide
which is more appropriate for their infrastructure.

Modeling variable bandwidth. Our model supports networks
with variable bandwidth. To add support for this, we assume min-
imal fluctuation within an epoch and change bandwidth only be-
tween epochs. We can then take the capacity matrix for each epoch
and use that in our capacity constraints.

Use in multi-tenant clusters. TE-CCL ’s formulation supports
multi-tenancy: all our models accept a network demand as input —
to model a multi-tenant environment, we have to change the de-
mand matrix to the sum of the demands across all collectives. The
capacity constraints will ensure we do not exceed network capacity
and the objective ensures we minimize the total completion time
across all tenants.

The formulation can be further updated to support priorities
across tenants (i.e., prioritizing one tenant’s completion time over
the others) if we add a separate buffer and read variable for each
tenant. We can then add the priorities to the objective function.
This change increases the number of variables in the MILP. For
efficiency, we may have to use A* in this case, but doing so would
not impact the quality of the solution compared to when we solve
a single tenant problem at the same scale.

The above formulation assumes that the schedule can be ex-
ecuted on hardware in a way that continues to fully utilize the
bandwidth of a link when necessary. An efficient hardware imple-
mentation of a multi-tenant schedule likely introduces additional
technical challenges, but we leave these for future work.

Handling stragglers. We note that our formulation also includes
coarse-grained mechanisms that help account for stragglers. For
instance, we can manage the latency variations that lead to strag-
glers using the o — ff cost model. By increasing @, we can address
latency variations that are not proportional to the chunk size, such
as when computation lags and fails to produce a chunk in time
for transmission. Similarly, we can adjust f to reflect latency vari-
ations proportional to the data transfer size, such as bandwidth
fluctuations due to congestion control behaviors. It is important
to note that the f cost applies to each transfer, while « impacts
the end-to-end completion time, particularly when disruptions in
pipelining occur, causing a link to become idle between transfers.

6 EVALUATION

We implement our solution in Python®. We use Gurobi [30] to solve
the optimizations. We convert our solution into MSCCL [5], which
can then port it into a schedule that runs on the hardware.

SLink to code: https://github.com/microsoft/TE-CCL
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Topology # of GPUs per chassis  # of edges per chassis
Internal 1 4 8
Internal 2 2 2
DGX1 8 32
NDv2 8 32
DGX2 17 32
AMD 16 56

Table 2: Our topologies. The internal topologies are from a
large public cloud and are proprietary: « is 0.6ps and 0.75us
on their GPU to GPU and GPU to switch links.

The goal of this evaluation is to (1) compare TE-CCL to state-
of-the-art, both in scale and in terms of solution quality; (2) show
TE-CCL scales to the large topologies; and (3) show the impact of
each of our different design choices.

Metrics. We use the following metrics to evaluate TE-CCL:

o Solver time: This includes the time to set up the variables and
constraints in the solver.

o Transfer time: The time it takes for the transfer to complete: for
all the nodes to receive their full demand.

o Output buffer size: The data each GPU receives once we satisfy
the demand (we borrow this from TACCL [33]).
o Transfer size: The amount of data each GPU sends to others: for

example, a GPU in an ALLGATHER demand with a transfer size
of 1 GB sends 1 GB of data to each other GPU.

o Algorithm bandwidth: The output buffer size divided by the
transfer time, a metric from NCCL [26].

Topologies and workloads. We evaluate TE-CCL using the topolo-
gies in Table 2. We use common topologies such as DGX1, DGX2 [28],
NDv2 [3], and AMD [2], as well as two next-generation (not in pro-
duction yet) proprietary topologies from a public cloud provider.
We evaluate with a range of data sizes and use profiled values for o
and f, similar to TACCL [33]. Collective communication operations
follow the standard sizes and groupings defined in NCCL [16].

TE-CCL variants. We use three variants of TE-CCL in our eval-
uations: the optimal (where we use the vanilla MILP for ALLGATHER
and LP for ALLToALL), the early-stop version for ALLGATHER (where
we use Gurobi’s ability to find a good solution — which is at most
30% away from optimal — quickly), and A* for ALLGATHER.

We set the epoch duration based on the bandwidth of the fastest
link. In the cases where a > 200 X 7, we increase the epoch dura-
tion by 5x to avoid large models (since & dominates, this does not
materially impact the solution).

TE-CCL solves optimization problems to produce a schedule.
The optimization is deterministic and outputs the same solution
every time we run it. The solver times also do not vary significantly
for a given optimization across runs.

Baselines. We compare our solution to two state-of-the-art solu-
tions: TACCL [33] and MSCCL® [5].

®SCCL was renamed to MSCCL.
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Collective, #chunks MSCCL (us) TE-CCL (us) Pipelining
Possible
ALLGATHER, 1 3.4 X
ALLGATHER, 2 5.1 5 v
ALLGATHER, 3 8 6.1 v
ALLTOALL, 1 3.4 4 X

Table 3: Comparing the transfer time from MSCCL
least-steps with TE-CCL (K = 10 and chunk size = 25 KB).
TE-CCL can better pipeline chunks and so pays less « cost
with larger transfers.

Topology Collective #GPUs EM Solver time
Internal 1 AG (AY) 64 1 3000 s
Internal 1 AG (AY) 128 1 7h
Internal 2 AG (AY) 128 1 1300 s
Internal 2 AG (AY) 256 2 2.8h
Internal 1 AtoA 16 1 66 s
Internal 1 AtoA 32 1 215s
Internal 1 AtoA 64 1 500 s
Internal 1 AtoA 128 2 800 s
Internal 2 AtoA 128 1 2600 s
Internal 2 AtoA 256 4 1500 s

Table 4: Large topologies for which TACCL cannot synthesize
the schedule. The solver time is the average TE-CCL time
to synthesize the schedule, and EM is the epoch multiplier
factor to change the epoch duration relative to the finest
granularity.

TACCL. We obtained the TACCL code from their public GitHub
repository [34] and report the solver time. TE-CCL takes an addi-
tional f compared to TACCL to route chunks through a switch:
TACCL replaces the switch with direct edges between the nodes
and only pays one transmission delay to cross that link, whereas
TE-CCL models the switch itself and pays two transmission de-
lays — one from the node to the switch and one from the switch to
the node. To compare fairly against TACCL, we change our model
of the switch to do the same when comparing with TACCL.

MSCCL. We compare to MSCCL using the public MSCCL code-
base [23] and also re-ran our experiments using the MSCCL artifact
from their submission (which the authors gave us). We verified and
confirmed with the authors that we used MSCCL correctly and that
our numbers are correct.

Platform. We use the solvers and the schedules they produce to
compute the transfer times and algorithm bandwidth for MSCCL,
TACCL, and TE-CCL. We checked using AMD nodes that these
estimates match what we get from running on hardware for both
TE-CCL and TACCL. Most of the results we report in the paper
are based on this approach (i.e, we use the schedule the solver
produces, the transfer times, and algorithm bandwidth to compute
the total time it takes for the schedule to finish). We also report
results on a small AMD test-bed that shows these results hold on
real hardware.

We report the capacity and delay for the public topologies in the
Appendix H.
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6.1 Comparison to MSCCL and TACCL

MSCCL. MSCCL has two modes: one minimizes latency
(least-steps) and one produces an instance solution (instance)
with the number of chunks, rounds, and steps as input. Our so-
lution is equivalent to the former, but the MSCCL least-steps
command took over a day to produce a solution for ALLGATHER
demands with more than 3 chunks and ALLToALL demands with
more than 1 chunk on a DGX1 topology (the MSCCL paper does
not evaluate this mode). We ran TE-CCL with max K = K = 10 (the
maximum number of epochs the optimization can use to satisfy
the demand) and 25KB chunks, and it finished in < 0.65s for all
ALLGATHER demands and < 0.97s for ALLToALL with less than 5
chunks.

We used 25K B chunks to capture the impact of @ (« = 0.7us)
on the solutions (Table 3): for all > 1 chunk cases TE-CCL outper-
forms. This is because our TE-based formulation models pipelining
explicitly and ensures a node receives a chunk before forwarding
it; MSCCL enforces a barrier instead. MSCCL performs better in
the 1 chunk case as TE-CCL cannot leverage its ability to pipeline.

We also compare with MSCCL’s instance solution (due to space
constraints, we show the results in the Appendix G). To create
an apples-to-apples comparison, we use the number of rounds in
MSCCL for K in TE-CCL — since MSCCL is no longer running
an optimization — and use & = 0 (this is necessary as our model
will need more epochs otherwise to account for ). We use the
scenarios from Table 4 in MSCCL [5] and run both solvers on a
desktop with 6 cores and 32 GB RAM. MSCCL failed to produce a
solution for ALLGATHER workloads with more than 1 chunk even
after 3 days. TE-CCL runs faster than MSCCL in almost all cases and
even improves MSCCL’s solution quality by 33% in the ALLTOALL
scenario. TE-CCL is slower than MSCCL in one instance (6, 7): this
is because in TE-CCL we solve for the optimal number of epochs,
and we use a value for K that is too tight — we can reduce the solver
time to 11 seconds by increasing K to 20 (the quality of the solution
does not change).

To fully highlight our runtime advantage over MSCCL, we ran
an ALLTOALL demand with 8 chunks using both solvers: MSCCL
timed out after 10032.7s and did not produce a schedule, whereas
ours finished in 1.88s with a valid schedule that finished the transfer
in 21ps (for 25KB chunks).

TACCL. We compare the solver time and algorithm bandwidth of
TE-CCL and TACCL using ALLGATHER and ALLTOALL demands
and on DGX2 and NDv2 based topologies with up to 34 nodes (a 2-
chassis DGX2 topology has 34 nodes) and on both internal topologies
with up to 128 nodes. We ran all experiments on a Linux Ubuntu
20.04 VM with two Intel Xeon(R) Platinum 8380 CPUs with a total
of 80-cores/160-threads and 512 GB RAM and used Gurobi 9.5.2
version as our solver. TACCL ALLToALL does not terminate for
large topologies (including the 2 chassis DGX2 ALLTOALL) — we use
a timeout of 2 + 2 hrs or 4 + 4 hrs for their routing and scheduling
phases depending on the topology size.

TACCL ran out of memory and did not produce a solution for
large Internal 2 topologies (with over 64 chassis) and for almost
all Internal 1 topologies (with over 4 chassis). Table 4 reports the
numbers for TE-CCL on > 64 nodes topologies.
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demands on the Internal 2 topology. TE-CCL produces equiv-
alent or higher quality solutions in all cases with similar
solver times.

TACCL scales better on the NDv2 topology compared to internal
topologies 1 and 2. In NDv2, only 2 nodes in a chassis connect to a
switch, but in internal topologies 1 and 2, many nodes in a chassis
are connected to a switch — TACCL replaces the switch with direct
edges; as we increase the size of internal topologies 1 and 2 the
number of such edges increases exponentially. The TACCL authors
recommended we use a sketch that only uses a subset of these edges.
Doing so improved the runtime for smaller topologies, but TACCL
still failed to produce a solution after 8 hours for larger ones.

TE-CCL often produces higher quality solutions compared to
TACCL (in some cases TACCL fails to produce a schedule and times
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out — we show those cases with an X): on DGX2 the improvement
is at least 12% and 9% (maximum 471% and 2979%) for ALLGATHER
and ALLTOALL respectively; on NDv2 0.36% and 0.18% (maximum
970% and 2919%); on Internal 1 —=5% and 20% (maximum 689% and
197%), and on Internal 2, 0.33% and 0.48% (maximum 5759% and
12322%). We show these results in Figure 5 and Figure 7 (we report
ALLTOALL numbers for Internal 2 separately for clarity). We report
the raw algorithm bandwidths for TE-CCL variants in the appendix
(see Table 8) for NDv2 2 chassis as a sample.

We use Gurobi’s early-stop for ALLGATHER demands to improve
TE-CCL’s ability to scale: this does not materially impact the quality
of TE-CCL’s solution — even with an aggressive optimality gap
threshold of 30% — but allows TE-CCL to solve the problem faster
in the ALLGATHER scenario (we found TACCL also uses this under
the hood — our solver time matches TACCL even when TACCL
uses this feature). TACCL uses this early stop mechanism in the
ALLToALL case as well, but we run TE-CCL to completion: TE-CCL
always produces schedules that match or beat those of TACCL,
and in many cases, it produces these schedules more quickly. We
compare the two solver times in Figure 6.

6.2 AllGather on AMD

We evaluate TE-CCL on a two chassis (32 GPU) AMD topology.
TE-CCL outperforms RCCL’s ring-based algorithm and TACCL
(Figure 8) for most transfer sizes: its solutions are 3x faster than
RCCL for 1MB transfers and 1.5-2X faster for larger transfers. Our
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Figure 9: The benefit of copy. For large transfers, a copy helps
finish the transfer faster.

results are based on ROCm6 [32]. We found TE-CCL outperformed
RCCL on ROCm5.7 by a larger margin for small transfers, but RCCL
improved their manually constructed schedules for small transfers
in their recent update and reduced the gap.

6.3 Scale

TACCL often crashes on large topologies, either due to requiring
more than 400 GB RAM or memory leaks and segmentation faults.
TE-CCL also requires a lot of memory in some cases (around 350
GB for ALLTOALL on large topologies), but we can control this by
changing the epoch duration to trade off the quality of the solution
with the solver memory. Table 4 summarizes our results on large
topologies and reports the scale factor (EM). We use output buffer
sizes larger than 16 MB — as the number of GPUs increases, chunks
become too small beyond this point. We adjust the epoch size by a
factor of, at most, 4 for these cases to limit memory usage.

6.4 Microbenchmarks

We next evaluate our design choices:

Copy. As shown in Figure 9, in-network copy is most helpful for
large transfers where there is not enough capacity to transfer mul-
tiple copies directly from the source to each destination: we see in
the largest transfer size (0.21 GB) copy reduces the transfer time
by 50% for DGX1, the Internal 1 with @ = 0 and & > 0, and 12.5% for
Internal 2. In-network copy does not help with small transfers as
there is enough capacity between the source and the destinations
to send multiple copies of the data directly from the source. We use
4 chunks to complete these transfers.
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better quality solutions with small ones.

for all topologies. Both graphs compute

Small vs large epochs (Figure 10 where we use 2 chassis for
each topology). In ALLGATHER we only allow chunks to traverse
one link in a single epoch: the length of the longest path dominates
the transfer time when we use large epochs because the length
of the epoch is too large compared to how long it takes for the
chunk actually to traverse the link (on faster links). We see this
more predominantly in the NDv2 and DGX2 topology where the fast
links have 4X higher bandwidth (large epoch duration is, therefore,
4x small epoch duration) compared to slower ones. In contrast, we
do not see a difference on Internal 1, where the links are mostly
homogeneous.

Store and forward. We find a somewhat surprising result: buffers
do not impact the solution quality but only the solver time (Fig-
ure 11)! This is because of the nature of collective demands such
as ALLGATHER and ALLTOALL. Because each node needs the same
amount of traffic as it has to forward, it can interleave consuming
traffic with forwarding it to compensate for the lack of buffers. But
in the presence of buffers, the feasible space of solutions is larger,
which in many cases enables the solver to find the optimal solution
more quickly (the improvement is 71% and 61% for Internal 1 and
DGX1 respectively). We believe it is possible to formally prove this
result but defer this proof to future work.

A* vs OPT. When a = 0, A* finished in 86.61s (263.29s for 2 chunk
demands) whereas the optimal took 346s (4392s for two chunks).
The optimal was 10% better than A* (6% in the 2 chunk case) —
transfer times were 3.48s vs 3.89s. The results are similar when
a > 0: A* finished in 137.02s (901.25s for the 2 chunk case) whereas
the optimal took 363.40s (3047s). The optimal was 20% better (8%
in the 2 chunk case).

7 RELATED WORK

TE-CCL provides a scalable method for collective communication
optimization by using a network flow-based approach. Our solution
supports unsustained demands, store-and-forward, and copy. Our
work builds on prior work both in network traffic engineering and
in collective optimization:

Multi-cast TE. Prior works have looked at traffic engineering for
multi-cast networks [11, 27]. Oliveira and Pardalos [29] provide a



ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

£ 100 IS 20
v 5 <{]:E> 5
£ g I
® i
= 0 c
o © -20
2 -50 =]
0 =
< 100 = a0
£ -150 g
£ -60
£ —200 3
2 >
o -250 o -80
=3 Q
E -300 £ -100

Int 1 Int 1 Int 2 DGX1 Int 1 Int 1 Int 2 DGX1
a=0 a=0

topology, demand topology, demand

(a) Solver time (b) Transfer time

Figure 11: We evaluate the impact of buffers on (a) solver time

and (b) solution quality. We use 2 chassis for all topologies.

100 (without buffers—with buffers)
Both graphs compute without buffers . Buffers

do not impact the solution quality but only the solver times.
The average improvements in solver time are: 61%, —28.46%,
0.23%, 71% for Internal 1 without «, Internal 1 with «, Internal
2, and DGX1 respectively.

comprehensive summary of these works. Blink [35] used these tech-
niques to optimize collective communication but does not model
delay and store-and-forward.

WAN TE. Many prior works in networking use the network flow
model to scalably route traffic in wide area networks [1, 13, 15, 25].
Most of these works assume sustained demands. Among these
works, Calendaring [17] provides a solution that models unsus-
tained demands. NetStitcher [21] adds to this the support for store
and forward but assumes flows do not compete for bandwidth. Nei-
ther of these works simultaneously model copy, store-and-forward,
and delay.

Prior work on collective communication optimization. Many
prior work have tackled the collective communication optimization
problem [5, 18, 31, 33, 35, 37]. We find these solutions do not scale
to the topologies and data sizes we have in production today and
those we anticipate for the future. TACCL is the most scalable of
these solutions, but it has trouble scaling when it sends more than
1-2 chunks, and is sub-optimal. Work such as [22, 36, 37] aims to
co-optimize either topologies and parallelization strategies ([36]) or
collective scheduling and execution planning [22]. These works rely
on collective communication optimizers as part of their search but
do not provide optimal solutions to the problem themselves — they
can use TE-CCL as part of their search. Our work is complementary
to these works.

8 LIMITATIONS AND FUTURE WORK

Handling failures. In our setting, we employ a Clos-based topol-
ogy with Equal Cost Multipath (ECMP) path redundancy. This
allows the network to naturally adapt to failures of inter-chassis
links and switches. We simplify this in our model by replacing the
detailed topology with a single big-switch abstraction, ignoring the
internal topology of the Clos. Handling failures within the chassis
is more challenging. Fortunately, these are less common. We defer
robust handing of such failures to future work.

Extension to public clouds. Our solution is designed to enable
operators who have full control over their training clusters and
are knowledgeable about the training workloads to optimize their
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infrastructure. There are several challenges that arise when at-
tempting to export our schedule to scenarios where the tenant
does not control the infrastructure, such as cloud customers. In
such multi-tenant environments, the user may not be aware of the
topology or the a and f values of each link. Prior work [5, 33, 37]
proposes profilers to capture these values. Although our solution
can produce a schedule based on the numbers generated by these
profilers, aligning with the same abstractions as these prior works,
we anticipate that the true values of @ and f will be unstable in a
shared network, thereby preventing these works from producing a
good schedule. We defer extending our solution to such scenarios
to future work.

ALLREDUCE implementation. TE-CCL supports ALLREDUCE im-
plicitly through the combination of ALLToALL and ALLGATHER
operations. We can also directly solve for the ALLREDUCE workload
by utilizing multiple demand matrices, each representing an inter-
mediate stage of the operation. However, we acknowledge that our
model does not account for the compute cost in this case, and we
plan to address this in future work.

Lowering to hardware. In TE-CCL, we match the chunk abstrac-
tion and the cost-model (a-f) from prior work and rely on their
observations to ensure the schedule we produce can run on hard-
ware. We do not account for any additional hardware constraints,
such as the number of channels or the number of thread blocks
required to run these schedules on hardware. MSCCLang [7] covers
many of the nuances involved in deploying such custom schedules
on hardware. In our hardware experiments, we hand-optimized
the implementation of the TE-CCL schedule (through the XML we
provided to MSCCL) and ran it with the same number of channels
as the schedules in RCCL and TACCL to produce fair comparisons.

9 CONCLUSION

We presented TE-CCL, a scalable collective communication opti-
mizer that models the problem through a TE-based approach. We
provide three algorithms to solve this problem: the MILP approach,
which optimally solves the general collective communication op-
timization problem and supports multi-cast; the LP form, which
is also optimal and much more scalable but removes support for
multi-cast; and finally, the A*-based approximation method which
is much more scalable than the MILP technique and continues to
support multi-cast but is no longer optimal. We show our solution
outperforms prior, state-of-the-art techniques such as MSCCL and
TACCL by over 2X.
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APPENDIX

Appendices are supporting material that has not been peer-
reviewed.

A INITIALIZATION AND TERMINATION
CONSTRAINTS

We introduced the main constraints for the MILP and LP formula-

tions in §3 and §4.1. But we need to add a few additional constraints

to initialize and terminate them.

The first epoch. We use buffers to indicate when the node has

a specific chunk. In the first epoch of the MILP we initialize the

source buffers as follows:

Bunoc=maxD, ;. VneN,VceC
deN 7

Bsnoc=0 VssneN:s#nVceC

We no longer need to buffer chunks we have already sent out in
the LP form and therefore these equations become:

Z Fs,n,j,O = Z
Vj:(n,j)eE VceC,VdeN
The last epoch. In the LP we do not need to buffer chunks if they
are not going to be forwarded. Nodes also don’t need to send out
any traffic after this epoch. Therefore, in the last epoch of the LP
we have:

Bsno + Ds,d,c Vs,neN:s,n¢S

VsneEN:s#nn¢S Fs,j’n’(K_rwJ%D = Rsnk

Vj:(j,n)€E

B MODELING LIMITED BUFFERS

In the MILP. To model limited buffers in the MILP we need to
change the buffer constraints to track which chunks to remove from
the buffer and in which epoch. Hence, we introduce a new variable
X nk.c which encodes whether we should remove chunk ¢ from
node s from the buffer at node n in epoch k. The buffer constraints
become:

Buffer constraints(s, n, k, ¢) £

2

Yjl(j.n)€E

Bs,n,k,c = Bs,n,k—l,c - Xs,n,k—l,c + Fs,j,n,k— [8in]-1c"

To enforce the limit on the buffer size, we add the constraint:

> Bonke <L VneNVkeKk,
s,c
where L is the limit on the buffer size. We impose no limit on the

auxiliary variable X ,, ;.1 . as the algorithm can choose to re-buffer
a chunk at a node at any point in time and again remove it later.
In the LP. The LP removes from the buffer what it sends out on a
link. Hence to use limited buffers we only have to impose an upper
bound on the sum of the buffer variables at a node:

> Benk <L VneNVkeK
S
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C MODELING LEGACY SWITCHES

For switches that don’t support copy, we use an approach similar
to TACCL’s hyper-edges. We remove the switch from the topology
and replace it with direct links between all pairs of GPUs that were
connected through the switch. We now need to account for the
capacity to and from the switch: this translates to a upper bound
on the number of hyper-edges we can use simultaneously in each
epoch.

We augment our notation with the variables in Table 5. We need
to add a constraint to the problem that enforces we can only use a
subset of the hyper-edges: the minimum of the number of edges
that come into the switch and go out of it. This constraint is as
follows:

Frijke < min([{(s,x) € E}[,[{(y.s) € E}|)
VneN\¥YceC,V(i,j)eQ(s)

Vk e K,Vs €S

Each node i can only send (receive) traffic on one of its outgoing
(incoming) hyper-edges:

Vk € K,vl € N,VS €S Fn,i,j,k,c <1

VneN,VceC,V (i,j)eQ(s)

Vk € K,Yie N,Vse€§ Fojike <1
VneN,VceC,V (j,i)eQ(s)

We only need to use this model in the general MILP form to
ensure the solution can scale—the LP model already assumes none

of the nodes copy traffic.

Epochs in a round Future epochs for a round

0 1 2 -+ K 0

- maxK’

Round r

[ oK 0

- maxK’
Round r +1

Figure 12: A* time progression between rounds

D THE A* TECHNIQUE

In the A* based approach, we split the problem into multiple time
partitions (or rounds). Our goal in each round is to get the chunks
closer to the destination. We solve each of these rounds sequentially
until we satisfy all the demands.

The delay on each link (i.e., @;j) means some chunks we send on
link (i, j) in a particular round may arrive at node j in a subsequent
round. We use the set K’ to denote all subsequent rounds and
Qs.c.ik’ r to denote the chunks that arrive in these rounds to account
for this (Figure 12). To keep things simple, we choose to set the
number of epochs in a round in a way that ensures chunks are only
delayed by a single round at most. This means the total duration of
the round is greater than the largest link delay. However, users can
choose to use shorter chunks — they will have to maintain more
state between rounds in that case.

To encode A* we maintain most constraints from the MILP for-
mulation but need to modify the objective function and the buffer
constraints to account for chunks arriving in future rounds. For
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Notation Description

r The function to get non-switch set of edges from the set of edges (I : E — E’). Therefore, E' C 2N=SXN=5 and (i, j) €
E = (i,j)€eEAij¢S.

Q The function from a switch node to the set of direct-connect edges (Q : S — 2N-5xN=5) O (s) = {(i, j)|(i,s) €EA (s, J) €
EA (i) ¢ E}

L The set of edges in the transformed graph (L = T'(E) U [seg Q(5)).

Table 5: Additional notation we need to model legacy switches.

Variable Description

R The set of rounds (R = {0,1,2,...R})

K The set of epochs in a round (K = {0, 1,2,...,K}). The number of epochs in a round is constant and does not change with the
round.

K’ The set of future epochs relevant for a round (K" = {0,1,2, ..., maxy; j)eE f%] b

D The demand function (N X N X C — {0, 1}) where D; 4 . , represents whether destination d wants chunk with id ¢ from node
s at the start of round r

Fscijkr (boolean) whether chunk c of source s is going over link (i, j) € E at epoch k in round r

Bgcikr  (boolean) whether chunk c of source s is in node i’s buffer at the start of epoch k in round r

Qscikr  (boolean) whether chunk c of source s is in node i’s buffer at the start of future epoch k" in round r.

Rscdkyr Whether chunk c of source s is delivered to node d by the end of epoch kin round r

Table 6: New variables for the A* technique.

switches, we need to modify the flow conservation constraints
because they do not buffer chunks.

Look ahead constraints. To account for chunks that will arrive
in the subsequent epoch we need to maintain additional state. For
none switch nodes, if the chunk arrives in the first epoch of the
next round (k’ = 0) we have:

Qs,n,c,O,r =
Vj:(j,n)€E
Vs,sne N:n¢S,VceC

Bsnekr + Ey jmex-r Sy

and for all later arrivals we have:

Qs,n,c,k',r =

2.

v j:(j,n) eEA(K [ 2L ) <=0
Vs,ne N:n¢SVeeCVk eK' : k' >0.

Qs,n,c,k'—l,r + F_. %j.n
s, jmeK+k! = =2=1,r

These equations allow us to store in the variables Q what chunks
are arriving in the next round. Notice how we also account for

buffers by Bg 5, ¢ k- in kK’ = 0 and by Qg j, ¢ 41, for the k&’ > 0 case.

Since the switches do not have large enough buffers we use the
following:

Qs,n,c,k,r =

2

Vj:(jin) €EA (K~ £217) <=0
Vs,sne N:neS,Vee C,Vk' e K’'.

Fs,j,n,c,K+k' b
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All that we have to do now is to set the buffers at the beginning
of each round r > 0 to Q (we exclude r = 0 since there is no prior
round, and we can use the same initialization that we had earlier):

Bsn,c0r = Qs,n,c0,r—1
Vs,neN:s#¥nAn¢SVceCr>0

For k > 0,if Qg p ck—1,—1 =0and r > 0,k <= max K’ we have:

Vs,ne N:n¢S,Vee CCVkeK:k>0

Bs,n,c,k,r =
Bs,n,c,kfl,r + Z Fs,j,n,c,k—[ "‘J;" 1-1,r + Qs,n,c,k,rfl
Vj:(j,n)€E
otherwise:

Vs,ne N:n¢S,YVeeCCVkeK:k>0
Bs,n,c,k,r:

Bsnek-1+ Fs,j,n,c,k—(a]%]—l
Vj:(j,n)€E
Specifically, we are adding to the buffer what is arriving from
the previous round. The two cases are there to ensure we account
for each arrival only once for non-switch nodes. The equations are
similar for switches:

Vssne N:neS,VkeK:k>0,VceC

_Mmax Fs,n,j,c,k,r <
Vj:(nj)€E
LV ji(jn)eE Fineskot&ing_y ¥ Qsnekr-1 7>0, k <= max K’
S L
2vjiGin)ee F, otherwise

s,j,n,c,+k7[aj%} -1
but since switches do not buffer chunks we incorporate them
into the flow conservation constraints.
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Algorithm 1: This algorithm identifies the number of
epochs we need to run the optimization with. We use the
resulting n, to instantiate the general optimization — this
is an upper bound on the number of epochs we need, and
the optimization can automatically discover if a smaller
number of epochs is sufficient.

Input: D. The demand matrix.

Input: G(N, E). The topology.

Input: 75,

Input: a;;. The latency cost of each link (i, j) € E.

Input: C;;. The capacity of each link (i, j) € E.

Input: C;. A set of candidate completion times.

Output: n.. The upper bound on the number of epochs we
need.

for total time € C; do

[

2 for n, € {4,8,12} do
total_time
3 T "—e
4 Opt, status «— general_form(D, 7, @, C, ne, G(N, E))
5 if status = feasible then
6 feasible_time <« total time
7 break

feasible_time

s
8 Ne Tort

9 return n,

The objective. We now need to motivate the optimization in each
round to get the chunks closer to the destination (while making it
even more profitable to satisfy the demand fully). So first, we need
to automatically compute this additional payoff. To do this, we add
logical edges to the graph that allow nodes to form a clique. We
assign a weight to each of these edges, which we calculate using the
Floyd Warshall algorithm [14] and the values for a;;. The chunks
we send in this epoch that don’t contribute to satisfying a demand
are stored in our Q variables. We now introduce a new variable:
P g j.r — the total number of chunks coming from source s and
going towards destination d that are currently on their way towards
the destination. We have:

Onsckr Yk €K' Vs,deN

VneN,YceC:Dy g r=1

Z Psarr= Z

VseN VseN,VceC

Ps,d,k’,r <

Dsgcr VK €K' ,YdeN

we also modify the demands from round to round to remove the
demands we have already satisfied. For r > 0 we have:

Vs,d € N,Yc e C

D _ 0 Dsdcr-1=1 Qs dcmaxk’,r-1 = 1
sder = Dsgcr-1 Otherwise

Given these new values of D and P we can now add the following
to our objective:

31

X. Liu et al.

Distance Objective(r) =

Y

——————— P g1+
7 s, dk’,r
VK’ €K', Vs,deN:s#d (K" +1)(1+FWsq)

1
T Psdk
7 S, a,K",r
VYk’eK’ Vs,deN:s=d (k + l)
where the second term ensures having the chunk at the destination
gives more payoff to the optimization (y < 1).

E NUMBER OF EPOCHS

We provide a simple algorithm for finding the number of epochs
to run the optimization with. This algorithm has no bearing on
the optimality of the solution as the optimization automatically
identifies if less epochs are sufficient.

F EPOCH DURATION SET BASED ON THE
FASTEST LINK

To set the epoch duration based on the speed of the fastest link
in the LP we do not need to change anything: the LP supports
fractional chunks and handles this automatically. The MILP only
allows us to send whole chunks — if we set the epoch duration to
be lower than the transmission time of the chunk on the slowest
link we can never use that link: we need to modify both the flow
conservation constraints and the capacity constraints to address
this issue.

We can model the flow conservation constraints similar to how
we model a: we account for how many epochs it takes a chunk to
traverse the slowest link and change the value of ;; accordingly.

To model the capacity constraint, we need to ensure the number
of chunks on a link never exceeds its capacity. We first calculate
how many epochs we need to transmit the chunk over a link (x)
and modify the capacity constraints to:

1>

Capacity Constraint(i, j, k)
Z Z Fijik.c
k—k<k’<kseN ceC

Notice this capacity constraint ensures the same behavior we
had when we used the larger epoch duration.

IN

kTt

G COMPARING TO SCCL INSTANCE

SCCL has two modes: the least-steps and instance. We compare
TE-CCL to SCCL instance in Table 7.

H DETAILS OF EACH TOPOLOGY

We use DGX1, DGX2, NDv2, and internal topologies 1 and 2 for our
evaluation. Figure 13, Figure 14, and Figure 15 shows the topologies,
capacity and o we used for DGX2, NDv2 and AMD respectively.
DGX1 has 8 GPUs and is similar to a single chassis NDv2. Internal
topologies 1 and 2 are proprietary, and we cannot report numbers
for those.
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Collective (# chunks, #epochs) SCCL solver time (s) TE-CCL solver time (s) Diff in transfer time (%)
ALLGATHER (1,2) 0.3 0.09 0

(2,3) 0.7 0.07 0

(3,4) 1.8 0.19 0

(4,5) 4.1 1.45 0

(5,6) 11.2 8.96 0

(6,7) 27.7 50.57 (11s) 0
ALLTOALL (1,3) 8.8 0.11 33%

(3,8) NA 0.18 NA

(8,30) NA 1.88 NA

Table 7: Comparing TE-CCL’s runtime to SCCL. We use 25 KB chunks for these experiments and o = 0. The difference in

transfer time is %. For all-to-all, we use our notation — the number of chunks represents the number of chunks
the sender wants to send to each destination (SCCL’s notation uses the number of chunks to mean the total number of chunks

the source needs to send).
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4— 125 GBps with « = 0.35us in each direction
----» 12.5GBps with a = 2.6us

1
|

Figure 13: Two chassis DGX2 topology used by TE-CCL. Each chassis has 16 GPUs (8 GPUs are used for sending chunks to
another chassis, and 8 GPUs are used for receiving chunks from the other chassis). Each dashed link is 12.5 GBps with « = 2.6y,
and each thick straight link is 125 GBps with a = 0.35us in each direction. TACCL replaces the switch in each chassis and
connects each GPU in a chassis to every other GPU, effectively forming a clique and uses its uc-min strategy to minimize the
number of edges used.
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{— 50 GBps with a = 0.7us in each direction
4 ---% 25 GBps with a = 0.7us in each direction
........ % 12.5 GBps with a = 1.3ps

Figure 14: Four chassis NDv2 topology used by TE-CCL. Each chassis has 8 GPUs connected with 50 GBps and 25 GBps links.
TACCL replaces the switch by connecting GPU 0 of a chassis to GPU 1 of all other chassis and constraints that only one of the
three links can be used at a given time.
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Figure 15: Two chassis AMD topology used by TE-CCL. Each chassis has 16 GPUs connected with 200 GBps, 100 GBps and 50

GBps links. GPU pairs are connected to small switches in each chassis, which are all connected to a bigger switch. All switch
links are 25 GBps.
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Table 8: Experimental results for TE-CCL and comparison to TACCL on NDv2 2 chassis topology.

Output ED CT ST AB TACCL TACCL TACCL
Improvement %
Buffer Size (us) (us) (s) (GB/s) CT (ps) ST (s) AB (GB/s)
ED - Epoch Duration CT - Collective finish Time ST- Solver Time

AB - Algorithmic Bandwidth = output buffer size / collective time

NDv2 2 chassis ALLTOALL optimal epoch duration

1GB 1250 320235.81 | 336.50 3.123 320049.4 1214.69 3.125 -0.058
256 MB 320 82000.00 307.33 3.122 81964.2 1217.56 3.123 -0.044
64 MB 80 20495.09 339.92 3.123 20532 1220.6 3.117 0.180
16 MB 20 5123.77 280.82 3.123 5164.4 1213.9 3.098 0.793

4 MB 5 1296.25 165.63 3.086 1324.2 1214.51 3.021 2.156

1 MB 1.25 325.28 189.47 3.074 359 1213.52 2.786 10.366
256 KB 0.32 85.52 218.50 2.993 115.72 1221.78 2.212 35.313
64 KB 0.08 23.30 161.99 2.747 50.34 860.88 1.271 116.052

16 KB 0.02 7.27 182.08 2.202 35.76 86.03 0.447 392.223

4 KB 0.02 4.64 69.58 0.862 32.16 31.14 0.125 592.134

1 KB 0.005 4.24 196.72 0.236 36.8 27.66 0.027 768.920

NDv2 2 chassis ALLTOALL max epoch duration

1GB 5000 325000 14.82 3.077 | 320049.400 | 1214.692 3.125 -1.52
256 MB 1280.41 | 83226.63 14.36 3.076 81964.200 | 1217.557 3.123 -1.52
64 MB 320.10 20806.66 11.01 3.076 20532.000 | 1220.602 3.117 -1.32
16 MB 80.01 5200.42 9.96 3.077 5164.400 1213.903 3.098 -0.69

4 MB 20 1300.03 11.81 3.077 1324.200 1214.507 3.021 1.86

1 MB 5 340 10.85 2.941 359.000 1213.521 2.786 5.59
256 KB 1.28 88.32 9.97 2.899 115.720 1221.779 2.212 31.02
64 KB 0.32 24.32 10.46 2.632 50.340 860.875 1.271 106.99

16 KB 0.08 7.6 8.83 2.105 35.760 86.034 0.447 370.53

4 KB 0.02 4.5 20.90 0.889 32.115 31.139 0.125 613.67

1 KB 0.01 4.235 276.47 0.236 36.799 27.660 0.027 768.92

NDv2 2 chassis ALLGATHER optimal epoch duration

1GB 1250 43750 7201.05 | 22.86 53766.70 7.01 18.60 22.90

256 MB 320 11200 7214.16 | 22.86 12494.60 6.56 20.49 11.56
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Table 8 continued from previous page

64 MB 80 2800 7209.46 | 22.86 3133.20 8.27 20.43 11.90
16 MB 20 700 7208.70 | 22.86 - - - -
4 MB 5 190 152.60 21.05 216.50 8.37 18.48 13.95
1 MB 1.25 48.75 160.10 20.51 62.15 62.65 16.09 27.49
256 KB 0.32 14.72 59.55 17.39 25.26 11.17 10.13 71.60
64 KB 0.08 6.08 27.61 10.53 13.08 3.66 4.89 115.13
16 KB 0.02 4.44 18.80 3.60 12.68 6.34 1.26 185.59
4KB 0.02 4.24 12.26 0.94 11.85 4.30 0.34 179.48
1 KB 0.005 4.135 50.28 0.24 10.16 3.02 0.1 145.68
NDv2 2 chassis ALLGATHER early stop at 30% using optimal epoch duration
1GB 1250 47500 2.66 21.05 53766.70 7.01 18.60 13.19
256 MB 320 12163.89 2.37 21.05 12494.60 6.56 20.49 2.72
64 MB 80 3920.31 2.45 16.33 3133.20 8.27 20.43 -20.08
16 MB 20 980.02 2.42 16.33 - - - -
4 MB 5 240 2.40 16.67 216.50 8.37 18.48 -9.79
1 MB 1.25 63.75 4.32 15.69 62.15 62.65 16.09 -2.51
256 KB 0.32 16.96 2.83 15.09 25.26 11.17 10.13 48.94
64 KB 0.08 6.32 3.94 10.13 13.08 3.66 4.89 106.96
16 KB 0.02 4.44 12.98 3.60 12.68 6.34 1.26 185.59
4KB 0.02 4.24 10.17 0.94 11.85 4.30 0.34 179.48
1 KB 0.005 4.135 42.94 0.24 10.16 3.02 0.1 145.68
NDv2 2 Chassis ALLGATHER max epoch duration
1GB 5000 50000 0.94 20 53766.70 7.01 18.60 7.53
256 MB 1280.41 12804.10 0.77 19.99 12494.60 6.56 20.49 -2.42
64 MB 320.10 3201.02 0.78 19.99 3133.20 8.27 20.43 -2.12
16 MB 80.01 800.06 0.77 20 - - - -
4 MB 20 200 0.77 20 216.50 8.37 18.48 8.25
1 MB 5 70 1.04 14.29 62.15 62.65 16.09 -11.21
256 KB 1.28 19.20 1.09 13.33 25.26 11.17 10.13 31.56
64 KB 0.32 7.68 1.74 8.33 13.08 3.66 4.89 70.31
16 KB 0.08 4.80 3.35 3.33 12.68 6.34 1.26 164.17
4 KB 0.02 4.24 21.56 0.94 11.85 4.30 0.34 179.48
1 KB 0.01 4.14 89.07 0.24 10.16 3.02 0.1 145.68
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