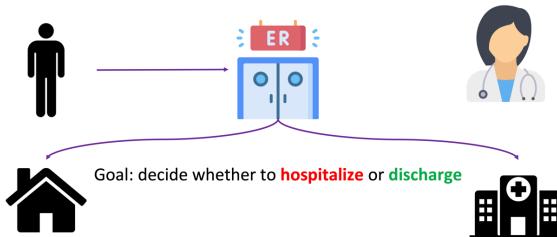


Human Expertise in Algorithmic Prediction

Rohan Alur, Loren Laine, Darrick K. Li, Dennis Shung,

Manish Raghavan & Devavrat Shah

Yale SCHOOL OF MEDICINE

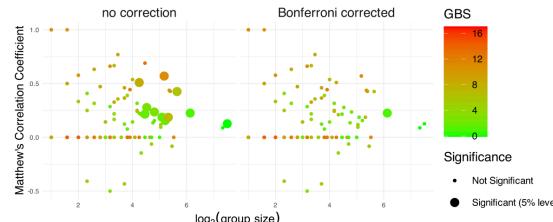

Long known that **algorithmic predictions** usually **outperform human experts...**

"There is no controversy in social science that shows such a large body of qualitatively diverse studies coming out so uniformly in the same direction as this one." (Meehl, 1986)

...but **human discretion** still plays a large role in most high-stakes predictions (e.g., clinical triage)

Why?

Case Study: Emergency Room Triage



We observe

- $X \in \mathbb{R}^d$ (patient characteristics)
- $\hat{Y} \in \{0, 1\}$ (physician decision)
- $Y \in \{0, 1\}$ (adverse outcome)

But physician has **significantly more information!**

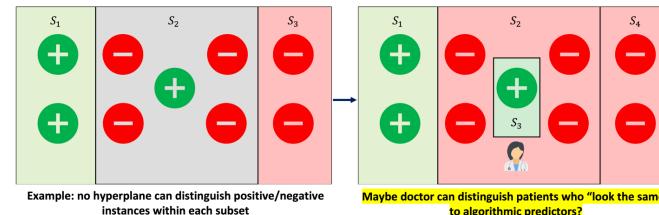
- E.g., can directly examine the patient

Do experts incorporate **information** that is **unavailable** to any predictive algorithm?

If so, how can we **leverage human expertise** in prediction tasks?

Algorithmic Indistinguishability

Idea: given class of predictors \mathcal{F} , partition inputs such that no $f \in \mathcal{F}$ can **distinguish** between positive and negative instances


Definition: $S \subseteq \mathcal{X}$ is α -indistinguishable for $\alpha \geq 0$ if

$$|\text{Cov}(Y, f(X) \mid X \in S)| \leq \alpha \quad \forall f \in \mathcal{F}$$

Interpretation: no predictor $f \in \mathcal{F}$ is informative within $S \subseteq \mathcal{X}$

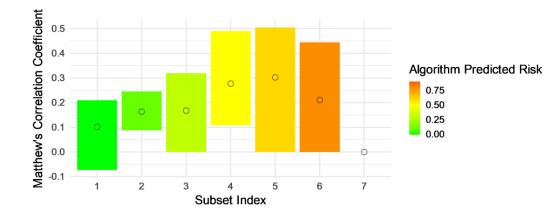
⇒ This is essentially *multicalibration* (Hébert-Johnson et al., 2017; Gopalan et al., 2021)

Ideally, expert can provide **additional signal** within S

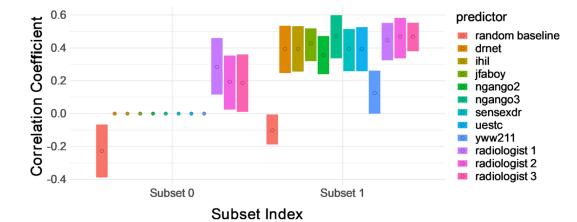
Key Result

Simple predictors (e.g., linearly regressing Y on \hat{Y}) **provably outperform** any $f \in \mathcal{F}$ within each indistinguishable subset

Even if \mathcal{F} contains complex, nonlinear predictors
Even if \hat{Y} is *less* accurate than the best predictor $f^* \in \mathcal{F}$


Suggests simple method for **incorporating expertise**

- Commit to a model class \mathcal{F}
- Find indistinguishable subsets $S_1, \dots, S_K \subseteq \mathcal{X}$
- Use \hat{Y} to predict Y within each subset


See paper for details and extensions

- How do we identify indistinguishable subsets?
- Real-valued outcomes, vector-valued human feedback (e.g., clinical notes)
- Information-theoretic interpretation of results
- Predictors which are robust to human noncompliance

Experiments

Physician triage performance within subsets which are indistinguishable with respect to class of depth ≤ 3 regression trees. For two subsets, representing ~24% of patients, physician judgment provides signal that these algorithms cannot replicate

Physician diagnostic performance within subsets which are indistinguishable with respect to 8 leaderboard algorithms for diagnosing atelectasis. For one subset, representing ~30% of patients, radiologist judgment provides signal that the algorithms cannot replicate