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Abstract
Executing deep neural networks (DNNs) on ultra-low-power (ULP)
microcontrollers creates enormous opportunities for new intelli-
gent edge applications. However, manually writing optimized DNN
programs for ULP devices is time consuming and error prone due
to the difficulty of managing on-device accelerators. Many prior
works address this problem by creating special libraries that tailor
common DNN building blocks for unique accelerators of ULP de-
vices. This is a bottom-up approach, as developers build DNNs by
assembling library calls. Unfortunately, the encapsulation overhead
inherent in this approach greatly reduces accelerator utilization and
overall performance. Instead, we advocate for a top-down approach.
We present Lupe, a code generation framework, that converts high-
level DNN algorithm descriptions to ULP-optimized code. Lupe
provides top-down intermittent support that significantly reduces
overhead while maintaining intermittent safety. We demonstrate
Lupe’s benefits on an MSP430 [54], achieving 12.36× and 2.22×
average speedup over two prior works across a variety of DNN
models in continuous power. Moreover, Lupe reduces the average
intermittent runtime costs of prior works by 96.65% and 71.15%,
respectively.
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1 Introduction
The emergence of small, but powerful, deep neural network (DNN)
models [20, 21, 32, 34, 58, 73] enables intelligent applications on
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ultra-low-power (ULP) devices. Although these devices include
on-chip accelerators, they are extremely constrained by small on-
chip memories (16–256 KB), 16-bit fixed point formats, and 4–32
MHz CPU frequency [53]. Despite the limited hardware resources,
executing these models on device saves tremendous energy—as
much as two orders of magnitude—compared to sending raw data
back to a cloud or edge server [38]. Additionally, some ULP devices
are deployed without batteries and operated intermittently, i.e.,
they use only power harvested from the environment and stored
in small capacitors. Whether power is continuous or intermittent,
ULP devices pose challenges to deliver real-time DNN inference.
Specifically, efficient DNN execution requires skilled use of the
accelerators, but making efficient use of these accelerators requires
tedious data manipulation.

ULP accelerators perform common linear algebra functions with
low latency. Prior works [13, 16, 28, 35, 72] provide libraries of
DNN components where each library function encapsulates the
data manipulation and accelerator calls, abstracting these confusing
details away from users. We refer to this method as a bottom-up
approach because users assemble their complete DNN from
many calls to individual library components. For example,
Tails [16] provides a library of DNN methods by wrapping ven-
dor provided accelerator functions, each of which independently
initializes and deallocates the function’s parameters in the accelera-
tor’s dedicated scratchpad memory. This encapsulation is necessary
to support the general use case—i.e., each one must manage the
scratchpad properly so one function call will not interfere with
another (e.g., by leaving the scratchpad or the accelerator in an
undefined state)—but this generality creates overhead that lowers
accelerator utilization.

In contrast, this paper explores a top-down methodology that
starts from the overall DNN structure and maps it directly
into accelerated functions, reducing inter-function data ma-
nipulation overhead by leveraging the high-level context of
the DNN structure. Such a top-down approach has been explored
for high-power devices (like GPUs) [37, 42, 59, 67, 71], yet—to the
best of our knowledge—no one has integrated it with DNN opti-
mization for ULP devices. Thus, we present Lupe, a code generation
framework that takes DNN descriptions as input, and outputs opti-
mized, accelerator-integrated code for ULP devices, e.g., the Texas
Instruments (TI) MSP430.The advantages of the top-down approach
are threefold:

First, it opens new opportunities to optimize accelerator re-
lated datamanipulation holistically. Lupe breaks the bottom-up
approach’s inherent encapsulation constraints and organizes the
accelerator routines for optimal data movement with minimal re-
dundancy, considering the entire DNN layer structure.
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Second, once the overhead of data movement is reduced, Lupe’s
top-down approach has a greater opportunity to select the most
efficient accelerator operation based on high-level DNN struc-
ture. Thus, Lupe automatically offloads the burden of picking these
operations by adapting the accelerator usage to DNN structures.

Finally, many ULP systems operate intermittently in a battery-
less condition by harvesting energy from the surrounding environ-
ment. The top-down approach allows highly efficient support
for intermittent-safe DNN computation. Lupe combines top-
down DNN context with the loop continuation (LC) technique [16]
to build a low-overhead, intermittent-safe DNN inference system.

Drawing these threads together, we construct Lupe as a code
generation framework that converts ML models in ONNX [55] for-
mats to a customized DNN inference library, which is compatible
with the MSP430 toolchain [52]. Lupe converts models built from
mainstream DNN frameworks—e.g., PyTorch [56] and TensorFlow
[1]—to ONNX representations. Moreover, ONNX provides layer
fusion operations [33], such as fusing batch normalizations with
convolutions, that can optimize the DNN from the graph level. Lupe
then takes the ONNX representation and generates efficient pro-
grams that utilize the MSP430’s low-energy accelerator (LEA) [39]
for either continuous or intermittent environments while maintain-
ing inference accuracy.

Moreover, we compare Lupe with two prior works, Tails [16] and
Hawaii [27], on 5 representative DNN models and 5 datasets. Our
experiments show Lupe achieves an average speedup of 12.36×
over Tails and 2.22× over Hawaii in continuous conditions. On
average, Lupe’s checkpointing schemes reduce intermittent runtime
overhead by 96.65% over Tails and 71.15% over Hawaii.

We summarize our main contributions as follows:
• We recognize and analyze the significance of adopting the

top-down approach for DNNs on ULP devices to achieve
higher efficiency due to better accelerator utilization.

• Lupe’s top-down approach greatly increases accelerator uti-
lization by optimizing away unnecessary data movement.

• High accelerator utilization, brought by Lupe’s top-down
approach, creates new opportunities for optimization by
tailoring the accelerator usage to the specific DNN structure.

• We propose a lightweight intermittent runtime, aided by
Lupe’s atomic logging scheme, that preserves runtime states
efficiently.

• We open-source the implementation of Lupe1.
With Lupe, ULP device developers can integrate DNN models

into application design without manually implementing them, but
instead generating accelerated ULP code from high-level DNN de-
scriptions. Lupe greatly improves runtime efficiency in both inter-
mittent and continuous conditions.

2 A Top-Down Approach to ULP Devices
We motivate the top-down approach by describing three opportu-
nities. Section 2.1 provides background on implementing DNNs on
the MSP430. Section 2.2 describes opportunities to reduce data ma-
nipulation overhead, while Section 2.3 discusses how the reduced
overhead creates further opportunities for adaptive layer genera-
tion. Section 2.4 provides background on intermittent computing,
1https://github.com/mingyuan-xiang/lupe.git

while Section 2.5 describes how the top-down approach can reduce
the overhead of supporting intermittent safety.

2.1 DNN Inference on the MSP430
The TI MSP430 processors are widely used in ULP computing.
MSP430 devices contain 2 compute components: a CPU and a low-
energy accelerator (LEA); each of these has a small SRAM scratch-
pad. For larger storage, the device has a non-volatilememory, FRAM.
Finally, a direct memory access (DMA) unit can efficiently transfer
data between SRAMs and FRAM.

The LEA implements efficient linear algebra and signal process-
ing functions. To use an LEA function, one must move data from
FRAM to the LEA’s SRAM, allocate function parameters on the
LEA’s stack (also located on the scratchpad), and then invoke the
LEA function from a C program. After the LEA function completes,
these parameters must be freed. Additionally, the LEA manages
an internal cache and when LEA functions are executed the LEA
automatically copies some data from its SRAM to its internal cache,
which creates some additional overhead.

There are often multiple ways to assemble DNN structures from
LEA functions. For example, we can use the LEA’s finite-impulse-
response (FIR) filter and vector addition [51], to assemble 2D con-
volutions (the FIR is essentially a 1D convolution). Alternatively,
we can also use the multiply and accumulate (MAC) operation that
serves as a vector dot product.

Unfortunately, the LEA’s tremendous performance improve-
ments come with a cost. The required data movement and SRAM
stack manipulation are tedious and error prone. Thus, the vendor
packages LEA functions into special libraries to abstract away these
tricky details. This is an example of the bottom-up approach, and
breaking this approach’s encapsulation introduces new optimiza-
tion opportunities.

2.2 Reducing Data Manipulation Overhead
Figure 1a is a bottom-up instantiation, or implementation, of a 2D
convolution (common in DNN models). This instantiation uses the
vendor-supplied LEA FIR and vector addition functions in the in-
nermost loop. Every LEA function can be divided into three parts,
namely, SRAMpreparation, invocation2, and compute. SRAMprepa-
ration moves data to the scratchpad and manages the LEA stack, as
described earlier. msp_lea_invokeCommand triggers an invocation
stage inside LEA, that copies data from its SRAM to its internal
cache. Compute refers to time spent purely on computation.

Figure 1a shows that much of SRAM preparation is redundant
within a DNN layer because this instantiation repeatedly calls the
same LEA functions with the same sizes. Figure 1b shows the la-
tencies of these three parts while increasing the input data size.
Preparation and invocation are dominantwhen input sizes are small;
the TinyML [4] models we use in this paper operate on relatively
small sizes (vector lengths of 52 or less).

Opportunity: A top-down approach can (1) minimize data ma-
nipulation costs by decoupling unnecessary SRAM preparation from
actual computation and (2) increase LEA function input sizes to reduce
invocation overhead for every instantiation.

2We use linear regression to estimate the invocation time as the real invocation time
is hard to measure.
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(a) An illustration of LEA functions.

(b) Latency decomposition of LEA functions.

Figure 1: (a) An LEA function consists of three stages: SRAM
preparation, invocation and compute, highlighted in pink ,

blue , green . (b) depicts latencies of LEA functions with
different input sizes on an MSP430FR5994 with a 16 MHz
CPU and an 8 MHz FRAM. When input sizes are small, the
overhead of preparation and invocation is relatively higher.

In Figure 1a, an SRAM preparation stage dynamically allocates a
data block on the scratchpad and initializes it with the operation’s
parameters. When computation finishes, it deallocates the data
block. Although the data block needs to be properly set up, we
can reorganize the program to move it outside LEA functions to
minimize preparation costs. Specifically, we allocate and initialize
the parameters at the beginning of DNN layer instantiations and
deallocate them in the end. Therefore, we eliminate most of the
preparation costs. Unlike the scratchpad, programmers have no
control over the LEA’s internal cache. However, we can use batched
acceleration (i.e., replace many small FIR calls with a single FIR call
to a much larger vector) to amortize the invocation overhead. Thus,
by using the high-level DNN structure, the top-down approach
provides a systematic way to reduce data manipulation costs for
both preparation and invocation stages.

2.3 Adaptive DNN Layer Generation
As LEA supports multiple linear algebra and signal processing
functions, there are multiple ways to implement a DNN layer using
LEA. Making the most efficient use of LEA requires selecting the
best function for a layer.

For example, Figure 2 illustrates two different instantiations of a
DNN convolution layer for a single input/output channel using a
: × : kernel with stride of 1, where one uses the FIR function and
the other uses MAC. The FIR-instantiation breaks the input into =
blocks, = = 6 in our example, corresponding to the height of the
output, as shown in Figure 2a. We apply the FIR, i.e. 1D convolution,
: times on each row within the block and accumulate : rows of

(a) Compute 2D convolution using the hardware-accelerated FIR and
(vector) ADD functions.

(b) Compute 2D convolution using the hardware-accelerated MAC
function.

Figure 2: (a) and (b) demonstrate how to compute a 2D con-
volution on a : × : kernel using the hardware-accelerated
FIR and MAC respectively. To use FIR, we apply it to : input
rows separately and use vector addition to aggregate FIR re-
sults for every output row. For MAC-instantiations, we use
a : × : MAC and write the results to output buffers directly.
Although either approach can be used to compute convolu-
tions, they perform differently based on convolution’s sizes.

results using vector addition. The MAC-instantiation, in Figure 2b,
breaks the input into = × = blocks. We apply a : × : MAC on every
block to get the output elements.

Unfortunately, the overhead of SRAMpreparation and invocation
makes it hard to realize gains from tuning DNN implementations
to the right LEA function. In fact, given the overhead, the best layer
instantiation is typically the one that makes the fewest LEA calls.
Our FIR-instantiation calls LEA functions 2×= ×: times, while the
MAC-instantiation calls them = × = times. Given that = � : , FIR-
instantiations will outperform MAC-instantiations in most cases.
We benchmark the performance of these two instantiations on
a variety of DNN settings, as shown in Figure 3. We highlight
the latency differences in colors, where red means that the FIR-
instantiation has better performance and blue means the vice versa.
As seen in Figure 3a, without minimizing data manipulation, the
MAC-instantiations are rarely higher in performance. However, if
we reduce data manipulation as described in the previous section,
a new opportunity arises.

Opportunity: A top-down approach creates a richer optimization
space for adapting DNN instantiations to accelerated functions.

Once we enable the top-down optimization demonstrated in
Section 2.2, neither of the two instantiations have a dominant per-
formance advantage across all data sizes as shown in Figure 3b
(note that the solid line denotes the boundary where one instanti-
ation is faster than another). Specifically, FIR-instantiations tend
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(a) Default data manipulation (b) Optimal data manipulation

Figure 3: Convolution performance of 3 × 3 kernels (a) with-
out, and (b) with data manipulation optimization, both using
an MSP430FR5994 with a 16 MHz CPU and an 8 MHz FRAM.
Colors indicate performance, blue favorsMAC instantiations,
red favors FIR (darker shades represent higher performance).
We highlight the boundarywhere one implementationwould
be favored with a solid line. With the default data manipula-
tion (Figure 1), FIR is almost always faster. With optimal data
manipulation (Section 3.1) there is a richer tradeoff space.

to perform better for small numbers of channels and large input
sizes, while MAC-instantiations perform better for large number
of channels and small input sizes. A top-down approach can adapt
the layer instantiations to the most efficient accelerator functions.

2.4 Intermittent-Safe Computation
By harvesting energy from the environment, e.g. solar energy, radio
frequency, etc [40], intermittent systems can be battery-free and
self-sustainable. When energy is sufficient, the system executes
programs as normal. As energy is depleted, it preserves runtime
states, recharges, and then restores states to continue execution.

A major challenge of intermittent systems is to guarantee com-
putation’s correctness given unpredictable power outages. One
approach is checkpointing, i.e., automatically recording and restor-
ing runtime states [9, 19, 30, 41, 44, 45, 61]. Checkpointing can have
high overhead due to the need to save and restore states. An alter-
native approach is to use a task system [12, 16, 18, 43, 46, 69, 70]
such that the entire program is divided into multiple, atomic tasks
and progress is automatically saved in between tasks. Tasks are
atomic—they either execute completely or not at all—so they need
to be short code blocks.

Since task-based systems encourage thinking about the program
as small blocks of atomic code, they naturally encourage a bottom-
up style that obscures high-level, algorithmic information. And
while they may be lower-overhead than checkpointing there is still
overhead of saving states at each task transition.

2.5 Top-down Intermittent Safety
The Tails system for intermittent-safe DNN execution introduces
the idea of a Loop Continuation (LC) for intermittent safety [16].
The idea is to create longer-running tasks with loops (such as a 2D
convolution), but use LC as a lightweight ”checkpoint” within a
loop-based task to reduce task maintenance overhead. LC works
under the assumption that the program control flow—even under in-
termittent power disruptions—is deterministic if the current output

and loop indices are preserved across power outages. This approach
is thus lower overhead than either checkpointing or tasking alone.
However, the Tails system uses a bottom-up programming approach,
replacing some tasks with LC. While this reduces task maintenance
time, the Tails evaluation still found that approximately 60% of total
execution time is spent on task maintenance [16]. This overhead
can be further reduced by applying a top-down approach to LC.

Opportunity: A top-down approach could apply the key idea
behind loop continuation—a lightweight checkpoint preserving the
current output and loop indices—to an entire DNN program to avoid
the overhead of task maintenance during DNN inference.

Specifically, we treat the entire DNN program as a single task.
Of course, to use LC for the whole DNN program, we need to
atomically log multiple data words without causing data corruption.
Section 3.3 describes how Lupe achieves this atomic logging.

3 Lupe Code Generation Framework Design
We implement Lupe as a code generation framework for both contin-
uous and intermittent-safe DNN inferences. Figure 4 shows Lupe’s
internal workflow. Lupe takes an input DNN model in the ONNX
[55] format and generates programs, for either continuous or inter-
mittent computation, that can be deployed on an MSP430FR5994
[54]. The code generation consists of three phases: Construction,
Calibration, and Checkpoint Insertion. The construction phase works
on each DNN layer sequentially. It first reorganizes programs to
minimize SRAM preparation and LEA invocation overhead (as mo-
tivated in Section 2.2). It then generates multiple instantiations for
each DNN layer using different LEA functions (for example, gener-
ating both FIR and MAC instantiations of convolutional layers, as
motivated in Section 2.3). The calibration step runs these different
instantiations and times them to select the best performing one,
completing the process of adaptive layer generation. Finally, the
checkpoint insertion phase inserts loop continuations as described
in Section 2.5.

3.1 DNN Layer Construction
In the DNN Layer Construction phase, Lupe parses the given DNN
model and generates instantiations (LEA accelerated implementa-
tions) layer by layer. Multiple instantiations for a single layer may
be generated (and final layer will be picked based on calibration).
For each generated instantiation, Lupe attempts to minimize the
cost of accelerator usage as motivated in Section 2.2. Specifically,
it first generates code to minimize data preparation costs (see Sec-
tion 3.1.1) and then batches accelerator function calls to reduce
accelerator invocation overhead (see Section 3.1.2).

3.1.1 Reorganize Programs to Eliminate Preparation Costs. Every
DNN layer that uses LEA can be reorganized to eliminate prepara-
tion costs. In this section, we use convolutional layers as an example
of how to systematically lower these costs.The same ideas, however,
apply to a wide range of DNN layer types.

Figure 2a shows how to compute a 2D convolution layer using
the LEA’s FIR functions. The implementation consists of four lev-
els of for loop, where the LEA FIR function, i.e. msp_fir_q15, is
called row by row. Figure 1a shows the internals of this function to
demonstrate how it interacts with the LEA and the LEA scratchpad.
The FIR function allocates its parameters on the LEA stack and
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Figure 4: The system design of Lupe. Lupe takes a DNN model in the ONNX [55] format and generates an optimized program
for MSP430FR5994 [54].

Figure 5: We illustrate how to reorganize instantiations on
a 2D convolution using FIR functions. We reorganize our
programs such that statements in SRAM preparation are
called as few as possible. Most of them only need to be called
once, at the beginning and end of the instantiation.

initializes them with the appropriate sizes (as specified in the func-
tion call). Then, it triggers LEA interrupts to invoke LEA execution.
When execution finishes, it deallocates the parameters so the LEA
can be used by another function.

Within a convolutional layer, many of the FIR’s parameters are
redundant—e,g, the vector and kernel size—and those parameters
occupy a fixed location in the LEA SRAM, even across multiple FIR
invocations,Therefore, we can move the allocation and deallocation
of these repeated FIR parameters to the beginning and the end of
the convolutional layer, respectively. As we break convolutions into
blocks, that take the same input and kernel sizes, Lupe only needs to
change the data addresses for the input, output, and kernel weights.
Therefore, only actual LEA computation of FIR is called repeatedly.
Figure 5 illustrates Lupe’s reorganization of the FIR-instantiation.

Although Lupe minimizes changes to FIR parameters, the vector
addition parameters may need to be modified. Specifically, Lupe
uses vector addition on LEA to accumulate FIR results and compute
bias offsets, where the input sizes for addition are different and
need to be updated.

In general, Lupe allocates parameters of LEA functions on SRAM
when entering the DNN layer and does not deallocate them until
exiting this layer. We initialize operational sizes of LEA functions
properly. These sizes may be changed when LEA functions are
reused in the same instantiations for different purposes. Before

every LEA execution, we need to update the addresses of related
data, which is moved to the scratchpad before execution.

3.1.2 Batch Acceleration to Reduce Invocation Costs. Lupe uses
the LEA’s FIR and MAC functions to instantiate both normal 2D
convolutions as well and depthwise separable ones [10]. Both in-
stantiations are explained in Figure 2a and Figure 2b. The code
must pay the invocation cost whenever an LEA computation is
invoked. Therefore, to further improve LEA utilization, Lupe intro-
duces batched-FIR-instantiations and batched-MAC-instantiations
for convolutions which occupies more then 95% of the total exe-
cution time. Additionally, invocation costs of all LEA functions in
these instantiations are reduced because we redesign the entire
instantiations to batch data as much as possible.

As it is demonstrated in Section 2.3, FIR applies the same kernel
to each block row by row. Batched-FIR, on the other hand, concate-
nates multiple input rows that corresponds to the same kernel row
together and calls a single FIR on the concatenated row. Batched-
FIR works better than batched-MAC when the input sizes are big
because we can always fill the entire LEA’s SRAM.

Batched-MAC concatenates input blocks and kernels across mul-
tiple input channels and does a MAC in one function call. It works
well when there are a large number of channels so that we can
exploit the whole SRAM. However, neither MAC nor batched-MAC
is preferred under large input sizes because MAC operations need
to reshape the input tensor and reshaping, that can be only done
through CPU, is not efficient on MSP430.

Both batched operations try to enlarge data fed into LEA as much
as possible so that Lupe produces the fewest possible LEA calls. The
only limit on batch sizes is the amount of data that Lupe can fit into
the LEA SRAM. Additionally, batched operations also help improve
overall performance of DMA as we transfer data with larger sizes.

3.1.3 Generate Efficient Data Movement. Lupe uses two methods
to manage data movement, DMA calls and unrolled loop copy. We
first demonstrate how to optimize DMA calls from a top-down view
based on the same insight of optimizing LEA function calls. Then
we express how to select which method to use through statistics
performance and DNN configurations.

An DMA call requires users to set DMA registers for input/out-
put addresses, DMA transfer sizes, and DMA channels3, and enable

3Each DMA channel can be configured independently. Lupe only uses one DMA
channel for the entire program.
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the DMA transfer by signaling the DMA control register. The de-
vice vendor, i.e. TI, provides packaged DMA calls to handle all such
tedious, boilerplate code. However, as we discussed in previous
sections, such a bottom-up approach introduces extra data manipu-
lation overhead (of these registers). Specifically, the register offsets
for different DMA channels are calculated dynamically, although
register offsets are fixed, because general vendor functions make
no assumption on which channel is used. Lupe, on the other hand,
forces program to use the same DMA channels, i.e. channel 0.There-
fore, Lupe can directly write values to these registers, diminishing
the register offset calculation costs.

Although DMA is fast, its register preparation, or configuration,
costs may exceed data movement costs when sizes are small, which
is true for the last few layers of some DNN models. Therefore,
Lupe uses unrolled loop copy instead, when faster. Figure 6 shows
latencies for different data movement methods on MSP430FR5994.
Particularly, Lupe uses unrolled loop copy for word sizes less than
10 as it has additional costs for keeping track of the array indices.

Figure 6: Latencies under different data movement methods.
We should use a unrolled loop copy for small sizes and DMA
copy for other cases.

3.1.4 Summary of Lupe’s DNN Instantiations. Table 1 lists instanti-
ations of supported DNN layers in Lupe. Lupe provides two instan-
tiations for 2D convolutions, including depthwise and pointwise
convolutions [10], and fully connected layers. Shortcut connections
have a single instantiation. Pooling and activations, computed on
CPU, also have a single instantiation. We name each instantiation
after the main LEA function it uses. Many other LEA functions are
also used; e.g., Lupe uses msp_deinterleave_q15 to extract the
stride results for convolutions with stride sizes greater than one.
All LEA functions are reorganized to reduce preparation costs as
described in Section 3.1.1.

3.2 Calibrating Layer Instantiations
Based on the insight from Section 2.3, Lupe generates DNN layers
adaptively. The previous section described how to implement part
of that idea: Lupe will generate multiple candidate instantiations for
a layer, some using FIR and some using MAC, for example. The final
step of adaptive generation, then, is to select the best performing
instantiation for a particular layer.

3.2.1 Select Best-Performing Accelerations. Lupe times each gener-
ated instantiation individually on the MSP430, from the Construc-
tion phase, listed in Table 1, to select the most efficient one in every
layer4. A Lupe generated DNN program consists of sequential calls
4Performance of DNN inferences on our device is stable, less than 0.001% fluctuation,
so real-time benchmarking can better reflect the layer performance comparing to static
analysis.

of DNN layers with no parallelization between DNN layers. There-
fore, an optimal implementation of every layer (in this program)
leads to the best-performing DNN program. Lupe aggregates the
fastest instantiation for each layer to build the entire model. Partic-
ularly, Lupe can be easily extended to newly added instantiations
when new acceleration methods are available.

3.3 Checkpoint Insertion
To ensure correctness of DNN programs in intermittent environ-
ments, Lupe must save execution results without data corruption
and recover runtime states after power outages. As discussed in
Section 2.5, Lupe uses loop continuation (LC) [16] with atomic
logging to achieve intermittent safety while using a single
task for an entire DNN program, eliminating task mainte-
nance during inference. Lupe augments continuous programs
from the Calibration phase with support for intermittent safety.
Section 3.3.1 describes how Lupe applies LC to the whole DNN
program, while Section 3.3.2 explains how atomic logging works.

3.3.1 Preserve DNN States Seamlessly. Lupe relies on two varia-
tions of LC, a loop-LC [16] and a switch-LC [70], differentiated
by types of control flows. Control flows of these two variations
are deterministic if the control variables (CVs) are properly saved.
Loop-LC constitutes the backbone of Lupe’s DNN programs as it
implements DNN layers in nested loops. Lupe’s implementation of
intermittent DNN programs are stateful for both inter-layer and
intra-layer support. Therefore, a switch-LC helps automatically
preserve program stages. We illustrate Lupe’s inter-layer and intra-
layer intermittent support in Figure 7.

For inter-layer support, Lupe uses a switch-LC to record the
DNN inference progress assuming both execution results and run-
time states are well-preserved within DNN layers.

Within layers, Lupe uses a mix of loop-LC and switch-LC. DNN
instantiations consist of four stages, preprocess, in which we prepro-
cess inputs for padding and set outputs to zeros if needed, main, in
which we execute the computation, bias, in which we add bias off-
sets, and exit, in which we reset CVs for the next layer. A recovery
function is used to restore the runtime states, e.g. CVs and execution
results, when power outages happen during inference.

Logging multiple pieces of information atomically is an essential
component of Lupe’s intermittent runtime, whereas MSP430 has
no hardware support for it. Therefore, we implement a software
atomic logging scheme, i.e. atomic_logging, that saves CVs and
execution results atomically, explained in Section 3.3.2.

Lupe’s LC scheme obviates the need for a task system during
DNN inference and greatly reduce the intermittent runtime over-
head. Importantly, LC guarantees correctness of runtime only if
information is logged atomically.

3.3.2 Log Intermittent Information Atomically. Atomic logging is
necessary to prevent data corruption. While Tails [16] does it
through a task system, we propose a much cheaper solution. Lupe’s
atomic logging scheme is built on four assumptions:

(1) Writing single variables to non-volatile memory is an atomic,
operation, that is guaranteed by our hardware.

(2) Instructions are executed in-order, that is preserved intact
by our hardware.
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Layer Type Instantiation

2D (Depthwise) Conv FIR
MAC

Pointwise Conv MAC
MPY

Fully Connected MAC
Matrix MPY

Shortcut Connection Vector ADD
Pooling

Activation No LEA

Table 1: Acceleration methods for
different DNN instantiations.

Figure 7: We use loop-LC and switch-LC to recover runtime states after power outages,
while atomic logging saves information atomically avoiding data corruption. We im-
plement atomic logging by using the MSB of CVs as a commit bit to mark if data is
successfully saved to a temporary buffer.

(3) Only one CV is changed from one control flow block to the
next. This is true as the control flow in Lupe instantiations
is continuous, namely that Lupe does not use loop-break
or goto paradigms. We achieve this by simply preventing
Lupe from generating such code.

(4) Values of CVs will not exceed 215 because the most signif-
icant bit, MSB, of CVs is preserved for a commit bit. This
commit bit is the key insight for achieving atomic logging.
Fortunately, this upper bound is far greater than any CV val-
ues we observe. Our implementation has less than a thousand
states, i.e. switch-CVs, in the entire DNN program and loop-
CVs are used to record input/output channels, rows/columns,
that are smaller than 100.

Thefirst two assumptions enforce that Lupe’s atomic logging scheme
will always be executed in the correct order. The third assumption
guarantees that the tuple of saved CVs has a one-to-one mapping
to control flow blocks, ergo data addresses. The last assumption
ensures that Lupe will never corrupt the commit bit.

atomic_logging function, in Figure 7, explains how Lupe logs
multiple pieces of information atomically. In this example, the goal
is to save data from in to out and write val to a CV, st. We first
write data from in to a temporary buffer. Then, we update the
commit bit and st simultaneously by using the MSB of st as the
commit bit to indicate data is successfully saved. Finally, we write
data to out and clear the commit bit sequentially.

During recovery, if the commit bit is set, wewill recovery runtime
states using CVs and copy data to out from the temporary buffer.
The commit bit is cleared after the recovery. On the contrary, if the
commit bit is not set, which means we either just finished saving
data from in to out or the data is not fully saved to the temporary
buffer yet. In both cases, we take no actions.

The benefit of having atomic logging is twofold. First, it preserves
runtime information with little data movement. Second, it only
demands a small buffer to hold the temporary data, namely the

particular row we are operating on. In our case, we need at most a
4KB buffer, to hold the LEA’s SRAM. For a simple FIR-instantiation,
we can achieve intermittent safety with only 80 additional bytes5
for all our benchmarked models.

With our LC scheme and atomic logging, we can greatly reduce
the data manipulation overhead of preserving intermittent runtime.

4 Evaluation Setup
Wediscuss ourmodifications to relevant implementations in Section
4.1. Our hardware setup and benchmarked models are described in
Section 4.2.

4.1 Points of Comparison
We compare Lupe generated programs with three relevant imple-
mentations under both continuous and intermittent power. Partic-
ularly, no intermittent runtime is included when measuring with
continuous power.

Tails [16] is the backend of the LEA-accelerated DNN library
for a task-based intermittent-safe computing framework (its CPU-
counterpart is called Sonic). Tails implements all convolutions by
FIR-instantiations from a bottom-up view, using a task system with
loop continuation, to guarantee atomic information updates.

Hawaii [27] is an intermittent inference library with limited
DNN support. It is designed primarily to produce low-overhead
intermittent safety over general efficient DNN execution. Hawaii
is relevant for comparison since its support for intermittent safety
uses a top-down approach, but it does not appear to explicitly
apply other top-down optimization opportunities (such as mini-
mizing data movement, batching accelerator calls, and adaptively
generating layers). More specifically, Hawaii reduces intermittent
safety overhead by preserving SRAM state, and thus tries to use
the LEA SRAM as much as possible. This design indicates that

5The largest output width in our benchmarks is 32 and we need 8 CVs in total.
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Hawaii achieves some of the benefits of the top-down approach
(high SRAM utilization) as a side effect.

Notably, Hawaii also uses LC for intermittent support. However,
it does not add support for atomic logging and therefore requires a
very large buffer to hold temporary data across multiple input rows
to recover data after power outages. In addition, Hawaii does not
support convolutions with padding or strides greater than 1. Nor
does it support depthwise convolutions and shortcut connections.
Moreover, Hawaii assumes that for one channel, both entire input
and output can fit into the LEA’s 4k SRAM, which is an invalid
assumption except for our smallest model, MLPClassifier. Given
these limitations, to benchmark Hawaii, we divide the computa-
tion into multiple chunks while using the entire SRAM. Still, we
fail to fit MobileNetV2 into the on-chip FRAM for Hawaii as it
requires a larger buffer than we can fit. We add all missing modules
(e.g., shortcut connection, etc.) to Hawaii from Lupe to have a fair
comparison.

Lupe-BT is implemented from a bottom-up view but adds inter-
mittent runtime using our LC schemes. Similar to Tails, Lupe-BT
uses FIR-instantiations for all convolutions and MAC-instantiations
for all fully connected layers. Lupe-BT ought to have performance
comparable to Tails in continuous power as both simply wrap ven-
dor supplied libraries and operate in a bottom up approach.

4.2 Evaluation Methodology
We evaluate Lupe and prior works on an MSP430FR5994 with
its LEA and DMA enabled. All experiments are conducted under
16MHz CPU frequency and 8MHz FRAM with -O2 optimization. A
software rebooter, based on the timer, is implemented to simulate
intermittent behavior. Our software rebooter will trigger an inter-
rupt and restart the device when it reaches the set time. We wrap
the model function with the software rebooter.

We evaluate performance on a variety of models and datasets.
The model architectures in our benchmarks can be found in Table
2. No model compression or decomposition are used in any of our
experiments because we purely focus on computational efficiency.
Graph optimizations, e.g. Layer fusion [33] for batch normalizations,
are enabled through the ONNX library for all models.

5 Evaluation Results
We evaluate the following research questions (RQs):

• RQ1: How fast is Lupe in continuous power? (Section 5.1)
• RQ2: How fast is Lupe in intermittent power? (Section 5.2)
• RQ3: How much energy can Lupe save? (Section 5.3)
• RQ4: How does each of Lupe’s optimizations contribute to

total performance? (Section 5.4)
• RQ5: How do Lupe generated programs improve LEA uti-

lization? (Section 5.5)

5.1 How fast is Lupe in continuous power?
Figure 8 shows inference latencies of all 5 models. On average,
Lupe achieves 12.36×, 11.11×, 2.22× speedup over Tails, Lupe-BT
and Hawaii respectively. Also, as noted in Table 2, Lupe’s speedup
comes without loss of accuracy.

Lupe is significantlymore efficient than the bottom-up implemen-
tations, i.e. Tails and Lupe-BT. Similar to our batched-acceleration,

Model
FLOPs Architecture Dataset

Input Size
Accuracy
Exp. / Act.

ResNet3 [17]

5.256 M

Conv 10 × 3 × 3 × 3
B (Channels: 10, Stride: 1)
B (Channels: 20, Stride: 2)
B (Channels: 40, Stride: 2)

FC 10 × 40

CIFAR10 [31]

3 × 32 × 32

80.42%

80.48%

DS-CNN [4]

3.049 M

Conv 64 × 1 × 3 × 3 (Stride: 2)
DS (Channels: 64, Stride: 1)
DS (Channels: 64, Stride: 1)
DS (Channels: 64, Stride: 1)
DS (Channels: 64, Stride: 1)

FC 11 × 64

SC [63]

1 × 49 × 12

94.39%

95.18%

MobileNetV2 [58]

1.115 M

IR (Channels: 16, Stride: 2)
IR (Channels: 24, Stride: 2)
IR (Channels: 32, Stride: 2)
IR (Channels: 64, Stride: 2)
IR (Channels: 64, Stride: 1)
IR (Channels: 96, Stride: 1)

Conv 24 × 160 × 1 × 1
FC 2 × 160

VWW [11]

3 × 80 × 80

80.69%

79.56%

LeNet [34]

0.417 M

Conv 6 × 1 × 5 × 5
Conv 16 × 6 × 5 × 5

Conv 120 × 16 × 5 × 5
FC 84 × 120
FC 10 × 84

MNIST [6]

1 × 28 × 28

98.49%

98.83%

MLPClassifier

0.165 M

Conv 6 × 1 × 5 × 5
FC 200 × 216
FC 120 × 200
FC 84 × 120
FC 10 × 84

F-MNIST [66]

1 × 28 × 28

90.57%

90.55%

Table 2: DNN model details in our benchmarks. B denotes a
basic block in ResNet, andDS is a block that has a depthwise
convolution followed by a pointwise convolution. The depth-
wise convolution has padding size of 1. IR is an inverted
residual block in MobileNetV2. We use 0.25 as the width mul-
tiplier for MobileNetV2. Additionally, the expansion factor
is set to be 6 except for the first block, which is set to 1. We
also include the test set accuracy from PyTorch (Exp.) and
fromLupe generated programs (Act.). Although computing in
fixed points on an MSP430FR5994, our optimizations do not
introduce any accuracy decrement, except for MobileNetV2
that we have about 1% accuracy loss.

Hawaii also tries to utilize the SRAM as much as possible, which
brings them a tremendous speedup in DS-CNN. Moreover, Hawaii
partially restructures programs for cheaper logging cost in inter-
mittent computing. Hawaii also optimizes the DMA calls in the
same way as Lupe does. However, although extra performance
benefits are introduced, Hawaii fails to recognize the possibility of
systematically reorganizing the program to reduce LEA preparation
overhead (as discussed in Section 3.1.1). Additionally, Hawaii does
not implement DNN layers adaptively, contrary to our optimization
in Section 3.2.1.

Overall, these results show that Lupe’s top-down approach achieves
large performance improvements by enabling optimizations that are
not possible otherwise, especially through bottom-up methods.

5.2 How fast is Lupe in intermittent power?
Figure. 9 shows latency per inference, including device initialization
time, under different reboot rates. During each reboot cycle, we
uniformly pick a random reboot time in the given time intervals.
As shown in the figure, the total execution time tends to be stable
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Figure 8: Latencies of the four studied methods in continuous power. MobileNetV2 does not fit in FRAM for Hawaii.

Figure 9: We benchmark all approaches under different re-
boot rates.We also show the overhead of adding intermittent-
safe support to each method. Tails and Lupe-BT have compa-
rable latencies under continuous environments, yet adding
intermittent runtime in a top-downway for Lupe-BT leads to
much lower overhead for logging information. Hawaii does
not support MobileNetV2.

regardless of the reboot rate. Even in the worst case, where Tails
restarts 11740.64 times per inference for DS-CNN, it only adds 7.5%
execution time.

For the total execution time, Lupe achieves 21.65×, 9.91×, 2.75×
average speedup over Tails, Lupe-BT andHawaii respectively.These
higher speedups comparing to Tails and Hawaii show that Lupe
provides a much more lightweight intermittent-safe support.

Furthermore, we analyze the overhead of adding such support by
highlighting the differences between continuous and intermittent-
safe versions. The intermittent runtime of Lupe reduces the average
intermittent-safe overhead by 96.65%, 47.49%, 71.15% over Tails,
Lupe-BT and Hawaii respectively.

We augment Lupe-BT’s bottom-up continuous implementation
with a lightweight top-down intermittent-safe support. This results
an extremely cheap logging overhead. Particularly, on average,
Lupe-BT reduces intermittent-safe overhead by 91.05% over Tails.

Overall, these results show that Lupe maintains its speed advan-
tages under intermittent power. In addition, the comparison of Tails
to Lupe-BT highlights the efficiency of Lupe’s top-down application
of loop continuation compared to a bottom-up approach.

5.3 How much energy can Lupe save?
Figure 10 shows the energy consumption of a single DNN infer-
ence for both continuous and intermittent-safe implementations,
benchmarked using TI’s energy trace software[14]. On average,
Lupe reduces energy consumption by 88.06%, 83.9%, 54.13% in con-
tinuous conditions over Tails, Lupe-BT and Hawaii, respectively.
Additionally, we measure the energy consumption of intermittent-
safe programs with no reboots. Lupe provides 92.3%, 79.44%, 56.92%
average reduction over Tails, Lupe-BT and Hawaii, respectively.

Additionally, Figure 11 shows power snapshots of executing
ResNet3 for continuous and intermittent-safe implementations. We
use continuous power and let the MSP430 spin for 2 seconds be-
tween each inference to differentiate compute and idle time. Lupe
has similar peak power as prior works, but because Lupe dramat-
ically improves LEA utilization—as motivated in Section 2.2 and
evaluated in Subsection 5.5—it achieves energy efficiency gains
from latency reductions in both continuous and intermittent-safe
implementations.

Overall, these results show that Lupe achieves not just significantly
lower latency, but that it has no significant energy overhead.
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Figure 10: Energy consumption of a single DNN inference for continuous and intermittent-safe implementations. Hawaii does
not support MobileNetV2.

(a) Power snapshots of continuous implementations.

(b) Power snapshots of intermittent-safe implementations.

Figure 11: Power snapshots of executing ResNet3 for (a) continuous and (b) intermittent-safe implementations, running in
continuous power. CPU spins for 2 seconds between each inference, which consumes around 3<, .

5.4 How does each of Lupe’s optimizations
contribute to total performance?

We now explain how each optimization technique improves the
overall performance. We use FIR-instantiations for all convolu-
tions unless adaptive layer generation, motivated in Section 2.3, is
enabled. Each optimization is added on top of the previous ones.
Overall, Lupe provides 11.11× speedup over our non-optimized
version (Lupe-BT), as shown in Figure 12.

Section 3.1.1 and Section 3.1.3 demonstrate how to minimize
DMA and LEA preparation costs by reorganizing programs. On av-
erage, optimizing DMA and LEA function calls improves latency by

1.24× and 2.06×, respectively. Generating data movement methods
adaptively is discussed in Section 3.1.3. It only adds 1.04× speedup
because DMA operations are already efficient from previous opti-
mizations. Lupe uses batched LEA operations to reduce invocation
overhead as described in Section 3.1.2. Changing FIR-instantiations
to batched-FIR-instantiations brings 2.12× speedup. Finally, having
the possibility of using other instantiations, namely adding the Cal-
ibration phase, gives us a speedup of 1.74×. This speedup mainly
comes from small input sizes of last few convolution layers.
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Figure 12: Breakdown of optimizations that contribute to the overall speedup in Lupe, starting with a FIR only instantiation
and adding other optimizations step by step. DS-CNN uses a different y2-axis scale.

We achieve a massive 27.85× speedup on DS-CNN, that comes
from batched acceleration, improving performance by 4.4×. DS-
CNN has large input and output channels for every layer, which
provides a perfect execution scenario for batched instantiations.

Overall, these results show that each of Lupe’s optimizations de-
scribed in Section 3 are meaningful to the overall result. Even the
adaptive data movement, that has the smallest impact, provides 4%
performance improvement on average.

5.5 How do Lupe generated programs improve
LEA utilization?

In several places, the paper has argued that the top-down approach
will improve LEA utilization, and therefore overall performance.
We measure the LEA utilization by comparing LEA execution time
of all LEA functions, i.e. time of msp_lea_invokeCommand in Figure
5, with the total inference time for one input. In other words, we
compute LEA utilization as the percentage of time that the LEA is
computing during execution; i.e. the ratio of computation time using
the LEA to total time for inferences. We compare the utilization
of two instantiations, FIR-instantiations and MAC-instantiations,
throughout every DNN layer precluding the Calibration phase.
As shown in Figure 13, Lupe greatly improves LEA utilization:
on average from 12.70% to 41.44% for FIR-instantiations and from
7.22% to 32.88% for MAC-instantiations.

Overall, these results show that our initial hypothesis is correct: the
top-down approach leads to better LEA utilization and better overall
performance.

Figure 13: Lupe improves LEA utilization for all models in
FIR-instantiations and MAC-instantiations.

6 Related Work
Top-down optimizations: A rich set of prior works have ex-
plored top-down optimizations in high power devices, i.e. GPUs,
[2, 37, 42, 59, 65, 67, 71]. However, none has explicitly explored the
challenges of the top-down optimization on ULP devices, with one
exception. Hawaii [27] employs top-down checkpoint insertion for
intermittent-safe DNNs on ULP. Lupe is the first work that attempts
to tackle the unique challenges of applying a top-down approach
to overall DNN optimizations on ULPs. Specifically, programming
models and optimization goals differ significantly from a GPU to the
LEA. The GPU optimization requires minimizing costs of running
parallel computation across different execution units. The LEA, on
the other hand, has high costs for SRAM preparation and function
invocation within a single execution unit—as discussed in Section
2—and hence requires novel solutions to reduce these costs and
increase its utilization.
DNN inferences on ULP devices: To support such efficient infer-
ence, several prior works have proposed schemes to deploy DNN
models on ULP devices, for MSP430 [5, 7, 13, 16, 24, 27–29, 35, 48,
68, 72] and other hardware [3, 60]. Some use CPU-based implemen-
tations [13, 35], while others accelerate DNN programs through
on-chip accelerators [3, 5, 7, 16, 24, 28, 29, 48, 60, 68, 72]. However,
they all fail to systematically structure programs that utilize on-chip
accelerators from a top-down view, and thus suffer from the limi-
tations we analyze in this paper. Particularly, [3, 48] optimize the
model architecture itself through quantization and neural architec-
ture search. Lupe, in contrast, does not change the DNN architecture
and optimizes it for the LEA by minimizing data movement and
adaptively generating DNN layers.
Intermittent DNN systems: Many works support efficient, timely
DNN applications in intermittent power. Some focus on DNN ar-
chitectures [15, 25, 26, 36, 50, 64], while others use advanced sched-
uling algorithms [8, 22, 23, 47, 49, 57]. Nevertheless, these systems
require the underlying DNN inference systems to be efficient.

7 Future Work and Conclusion
Lupe’s top-down approach can be applied to other microcontrollers
with similar accelerators because it only uses common linear al-
gebra operations. Moreover, other DNN operations, such as self-
attention [62], can be added to Lupe using the same top-down
methodology. For example, self-attention can be accelerated by
matrix-matrix multiplication or MAC functions on the LEA.
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This paper introduces Lupe, a code generation framework for
DNN inference on ULP devices. Lupe uses a top-down approach
to achieve three specific advantages. First, Lupe greatly reduces
the data manipulation cost for accelerator use. Second, it adap-
tively generates the best performing instantiations of DNN layers.
Finally, Lupe implements an extremely low cost intermittent-safe
computing runtime. For two prior works, Lupe achieves an average
speedup of 12.36× and 2.22× in continuous power, reducing the
intermittent overhead by 96.65% and 71.15%, respectively.
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